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Intro

● NLP: necessary to deal with huge 
amount of digital information

– IR, IE, QA, MT, ...

● World knowledge: required for the 
semantic level

– Conceptualisations of reality: from 
definition of ontology in Ancient Greece to 
KBs in AI, LRs in CL

– LRs extensively applied in NLP but...
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Intro

● ... but LRs are expensive to build
● Much effort devoted during last 15 years

– WordNet, EuroWordNet, SIMPLE, ...
– Rich semantic info (relations, roles,..)

● Enough coverage?

– ~OK -> verbs, adjs, advs, common 
nouns

– ¬OK -> Named Entities, domain 
terms, multiwords, ...
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Knowledge Acq. bottleneck

● “humans cannot manually structure the 
available knowledge at the same pace as 
it becomes available” (Philpot 05)

– Automatic procedures needed!

● Step forward -> 3 “ingredients”
– Web2.0 (vs MRDs and corpora)
– LRs
– Standards / Interoperability
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MRDs

● Explicit structure
– Facilitates extraction
– ACQUILEX (89-92)

● Extraction syntactic, semantic, taxonomies, ...

● Small and fixed size
– Research moved to corpora in the 90s 

(Hearst 92)...
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Corpora

● Does not suffer from size problem
● No structure
● Subjectivity

– Relations in corpora more subjective than 
those in dicts/encyclopedias (Hearst 98)

– 44% sentences subjective in non opinion 
pieces of WSJ (Wiebe 04)

● Detect lexical variability?
– Bill Clinton, William Clinton (Fleischman 03)
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New Text

● Emerged with Web 2.0
– Wikis, blogs, folksonomies

● Some structure -> facilitates extraction
● Dynamic -> up-to-date knowledge
● Collaboratively built -> lang variety
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Wikipedia

● Multilingual, collaborative encyclopedia
– Structure: pages, categories, inter e 

intralingual links, redirects, infoboxes

● Quality comparable to traditional ones 
(Britannica, Brockhaus)
● Interests in CL community

– WiQA, GikiCLEF, New Text, WikiAI08, ...
– APIs: JWPL, JWKTL
– Applied to NLP: QA, IE, MT, ...
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MRDs corpora wikis
size small ~unlimited big
subjectivity ~none high low
structure high none medium
dynamic no no yes

MRDs vs Corpora vs Web2.0
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Language Resources

● Result of many man-years expert work
● Pay off effort <-> applicability?

– Political, distribution, technical

● Technical
– Formal validation
– Automatic access methods (APIs)
– Formalisation -> support reasoning
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Interoperability

● Historical differences in formats, 
structures, semantic of categories in LRs

– Barrier for sharing / interchanging
– Lack coordination, competing practices, ...

● Inititatives
– EAGLES, ISLE, PAROLE, ...
– LMF, MAF, SynAF, SemAF, ...
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NEs

● Usually refer to
– Proper nouns: names of people, locations, 

organizations, ...
– Numerical expressions: time, amounts, ...

● Important for NLP tasks
– NE Recognition, subtask of Information 

Extraction
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Why NEs?

● LRs lack info about NEs
– “building a proper noun ontology is more 

difficult than building a common noun 
ontology as the set of proper nouns 
grows more rapidly” (Mann 02)

● NEs provide salient clues and have a 
special role in translation
● Stored Knowledge can be applied to NLP 
tasks
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Why NEs?

● E.g. Question Answering
– Who is Vigdis Finnbogadottir?

– QA system
● Linguistic analysis of text (Ferrandez 06)

● “[...] presidents: Vigdis Finnbogadottir ( Iceland ), [...]”

● Solution: Iceland
● Possible related knowledge in LR

– “Vigdis Finnbogadottir” instance_of: “president of 
Iceland”, “icelandic”, “female head of state”

● LR can be useful within QA, for example to:
– Find and validate answers
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MINELex
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MINELex
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● LRs used...
– WordNet en&es, SIMPLE it



  

Mapping

● Establish an initial link LR<->WK
● Lemma (PoS tagger)

– actor <-> Actors, aquarium <-> Aquaria

● 65.4% (57.4% older dump) of target 
synsets linked. The rest?

– 75% no matching category but page
– 13% nothing
– 10% PoS errors
– 2% B.E. vs A.E.

21



  

Disambiguation

● A mapping might be ambiguous
– e.g. obelisk -> Obelisks

1.Stone pillar

2.Character used in printing

● Simply take the MFS: ~65% acc. (YAGO)

● or... Automatic disambiguation
– Instance intersection
– Text similarity
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NE Intersection

● Look for common NEs in WN and WK 
hyponymy chains

– WN obelisk, WK Obelisks
● WN obelisk1 -> {Washington Monument, ...}
● WN obelisk2 -> {Ø}
● WK Obelisks -> {Washington Monument, ...}

– Disambiguation: WN sense1 <-> WK cat

● Eval set: 260 polysemous words 
– 100% P, 39% R

● Few instances in WN...
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Text similarity

● Exploit definitions to disambiguate
<word id="obelisk">

    <sense number="1">a stone pillar having a rectangular cross section    
tapering towards a pyramidal top</sense>

    <sense number="2">a character used in printing to indicate a cross 
reference or footnote</sense>

    <category id="Obelisks">An obelisk (Greek ὀβελίσκος , diminutive of 
ὀβελός , "needle") is a tall, narrow, four-sided, tapering monument which 
ends in a pyramidal top. Ancient obelisks were made of a single piece of 
stone (a monolith). </category>

</word>
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Text similarity

● Set of representative methods
– Textual Entailment system
– Personalised PageRank
– Semantic Vectors
– Baselines

● MFS, word overlap

– Combinations
● oracle, unsupervised, supervised, voting
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Textual 

● TE task: two texts (Hypothesis and Tesis) 
-> Decide if H entails T
● TE system used: several Inferences

– Lexical distance measures: Euclidean, 
Smith-Waterman, ...

– Semantic: WordNet similarity measures, 
verbs' similarities, ...

●Apply bidirectionally:
– WordNet noun might imply Wikipedia 

category or the other way
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Personalised Pagerank

● Graph-based algorithm over LR
– Represents WordNet as graph
– For each text computes PPR over graph, 

producing probability distribution over 
synsets

– Compares how similar these two discrete 
probability distributions are by encoding 
them as vectors and computing the cosine 
between the vectors

27



  

Semantic Vectors

● LSA-like 
● Tokenisation and indexing (term 
document matrix) by using Lucene
● Creates WORDSPACE model from matrix
● Uses Random Projection to perform 
dimension reduction
● Corpus for this task:

– Glosses from WordNet (117,598)
– Abstracts from WK 01/2008 (2,179,275)
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Text similarity

29

Run Accuracy
MFS 64.7%
Word Overlap 56.3%
Word Overlap (no stop words) 62.7%
Semantic Vectors 54.1%
PPR 61.8%
PPR (no stop words) 64.3%
TE (trained on TE corpus) 52.8%
TE (no training) 64.7%
TE (supervised) 77.74%



  

Text similarity
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Run Accuracy
Oracle (PPR+SV+TE+WO) 84.5%
Voting (PPR+SV+TE+WO) 66.5%
Voting (PPR+TE+WO) 68%
Unsupervised (PPR+SV+TE+WO) 65.2%
Unsupervised (PPR+TE+WO) 65.7%
Supervised (PPR+SV+TE+WO) 77.24%
Supervised (PPR+TE+WO) 77.11%



  

Extraction

● For each category mapped (and its 
subcategories*) extract articles and 
related data

– Redirects: variants
– Abstracts: definitions
– Equivalents in other langs

● Subcategories not always hyponyms
– Philosophers -> Philosophers by era
– Philosophers -> Timelines of philosophers
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Extraction

● Hyponym identification
– Morphosyn. patterns

● ^ category (“ by “ | “ of “ | “ stubs$”)
– philosophers by nationality, philosophers of mind

● ^ (JJ|JJR|NN|NP)+ (CC(JJ|JJR|NN|NP)+)* “ “ 
category$

– Spanish philosophers

– Similar patterns for es, it
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NE id

● Identify which WK articles are NEs
– Capitalisation norms (in some langs)

● NEs -> proper nouns -> begin by uppercase
● ¬NEs -> common nouns -> lowercase

– Fetch article's title and redirects and look 
for occurrences

1. In the WWW

2. In its article body

3. Combine
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NE id

● Look for title in web search engine
– Occurrences in first 50 hits

● Begin with upper/lowercase + threshold

– 76.7% P, 89.8% R
– Drawback: noise due to sense variation

● “Children's Machine” -> NE, laptop by OLPC
● But in the WWW we might find: “... The 

children's machine ...”
– Seymour Papert's book
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NE id

● Look for title (and variants) in article's 
body (Bunescu & Pasca 06)

– Exploit interlingual links
● Whatever the lang compute occurrences in 10 

langs that follow capitalisation norm
– ca, en, es, fr, it, pt, sv, ...

● More occurrences -> results more representat.
● Almost language independent

– Results
● 76.5% P, 88.4% R
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NE id

● Extract salient terms in article's body. 
Look for title + salient terms in WWW

– TF-IDF corpus and stopword derived WK
– e.g. “Children's Machine”

● Salient terms: OLPC, 100$ laptop, ...
● Search:

– “Children's Machine”, OLPC, “100$ laptop”
● Hopefully we won't get hits regarding the book!

– 79.17% P, 90.48% R
● WWW: 76.7% P, 89.8% R
● WK: 76.5% P, 88.4% R
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Postprocessing

● Additional NEs 
– An extracted NE for lang a may extract a 

further NE in lang b

● Connect NEs to ontologies
– Exploit mappings LRs to ontologies

● SUMO -> English
● SIMPLE -> Italian
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The NE Lexicon
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LexicalEntry

le id PoS

en_le_Tim_Robbins PN

FormRepresentation

written form variant type

en_Timothy_Francis_Robbins alias

en_Timothy_Robbins alias

en_Tim_Robbins full

Sense

sense id resource id in resource definition

en_s_Tim_Robbin
s

en_Wikipedia 269416
| location = West Covina, California, United
States

SenseRelation

source sense id relation type target sense id

en_s_Tim_Robbins instanceOf en_s_actor0_18

en_s_Tim_Robbins instanceOf en_s_film_director0_18



  

en_s_Tim_Robbins instanceOf en_s_film_director0_18

en_s_Tim_Robbins instanceOf en_s_militant0_18

en_s_Tim_Robbins instanceOf en_s_screenwriter0_18

SenseAxis

senseaxis id senseaxis type

sa_853829 eq_syn

SenseAxisElements

senseaxiselements id element senseaxis id

sae_1479620 en_s_Tim_Robbins sa_853829

sae_1479622 es_s_Tim_Robbins sa_853829

sae_1479624 it_s_Tim_Robbins sa_853829

SenseAxisExternalReference

senseaxisexternalref id senseaxis id resource resource id relation type

saer_737131 sa_853829 sumo Position +

saer_737132 sa_853829 sumo believes +

saer_854146 sa_853829 simple Profession



  

The NE Lexicon
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John Paul II Pope John Paul II

Karol_Wojtyta

pope0_18

polyglot0_18

Juan_Pablo_II

exorcist?_?

sa_669953

Papa_Giovanni_Paolo_IIHuman

religioso1 Usem2743teologo



  

The NE Lexicon

 

● Postprocessing
● NEs: 974,567 en, 137,583 es, 125,806 it
● Ontolinks:

– 814,251 SUMO, 42,824 SIMPLE

● http://www.ilc.cnr.it/ne-repository/
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EN ES IT
NEs 948,410 99,330 78,638
Written forms 1,541,993 128,796 104,745
Instance rels 1,366,899 128,796 139,190

http://www.ilc.cnr.it/ne-repository/
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Application to QA

● BRILIW QA system
– Cross-lingual en-es

– Ranked 1st at CLEF 2006
– Syntactic patterns

● Detect expected answer type
● Extract answer

– After Passage Retrieval
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Application to QA

● Validation module with NE knowledge
– Two types of questions

● Expect NE as answer type
– Who is the General Secretary of Interpol?

● Ask definitions of NEs
– Who is Vigdis Finnbogadottir?

– An answer is assessed as:
● UNKNOWN -> NE not found in MINELex
● CORRECT -> NE found, type matches expected
● INCORRECT -> NE found, type does not match

– Can reorder the answers provided
● CORRECT >> UNKNOWN >> INCORRECT 45



  

Application to QA

● Evaluation
– CLEF 2006 question set
– Validation improves accuracy by 28.1%

● Example

46

Who is the General Secretary of Interpol?
Answer Validation Reranking

Organización Internacional de Policía Criminal UNKNOWN 2

Enrique Gómez CORRECT 1

J efe de la Policía Interna UNKNOWN 3

Policía Internacional UNKNOWN 4



  

To conclude...

● Combination to circumvent KABP
– Exploit wiki community & lexicographers
– Contribute yourself:

● Standards -> interoperability

● Practical case of study
– “ingredients” + NLP machinery -> NE lex.
– MINELex

● Usefulness? -> QA
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End

Thank you for listening!

Questions, comments, ...?

Antonio Toral
{fistname.lastname}[at]ilc.cnr.it

Istituto di Linguistica Computazionale - CNR, Pisa (Italy)
Dep. Llenguatges i Sistemes Informàtics - Universitat d'Alacant (Spain)
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