2009/10/01 Centre for Next Generation Localisation Dublin City University

Web 2.0, Language Resources and standards to automatically build a multilingual Named Entity Lexicon

Antonio Toral

{fistname.lastname}[at]ilc.cnr.it Istituto di Linguistica Computazionale - CNR, Pisa (Italy) Dep. Llenguatges i Sistemes Informàtics - Universitat d'Alacant (Spain)

Outline

- Intro
- Knowledge Acquisition bottleneck
- NEs, why NEs?
- Building MINELex
- Applying this to the real world
- Conclusions

Intro

- NLP: necessary to deal with huge amount of digital information
 - IR, IE, QA, MT, ...
- World knowledge: required for the semantic level
 - Conceptualisations of reality: from definition of ontology in Ancient Greece to KBs in Al, LRs in CL
 - LRs extensively applied in NLP but...

Intro

- ... but LRs are expensive to build
- Much effort devoted during last 15 years
 - WordNet, EuroWordNet, SIMPLE, ...
 - Rich semantic info (relations, roles,..)
- Enough coverage?
 - ~OK -> verbs, adjs, advs, common nouns
 - ¬OK -> Named Entities, domain terms, multiwords, ...

Outline

- Intro
- Knowledge Acquisition bottleneck
- NEs, why NEs?
- Building MINELex
- Applying this to the real world
- Conclusions

Knowledge Acq. bottleneck

- "humans cannot manually structure the available knowledge at the same pace as it becomes available" (Philpot 05)
 - Automatic procedures needed!
- Step forward -> 3 "ingredients"
 - Web2.0 (vs MRDs and corpora)
 - LRs
 - Standards / Interoperability

MRDs

- Explicit structure
 - Facilitates extraction
 - ACQUILEX (89-92)
 - Extraction syntactic, semantic, taxonomies, ...
- Small and fixed size
 - Research moved to corpora in the 90s (Hearst 92)...

Corpora

- Does not suffer from size problem
- No structure
- Subjectivity
 - Relations in corpora more subjective than those in dicts/encyclopedias (Hearst 98)
 - 44% sentences subjective in non opinion pieces of WSJ (Wiebe 04)
- Detect lexical variability?
 - Bill Clinton, William Clinton (Fleischman 03)

New Text

- Emerged with Web 2.0
 - Wikis, blogs, folksonomies
- Some structure -> facilitates extraction
- Dynamic -> up-to-date knowledge
- Collaboratively built -> lang variety

Wikipedia

- Multilingual, collaborative encyclopedia
 - Structure: pages, categories, inter e intralingual links, redirects, infoboxes
- Quality comparable to traditional ones (Britannica, Brockhaus)
- Interests in CL community
 - WiQA, GikiCLEF, New Text, WikiAl08, ...
 - APIs: JWPL, JWKTL
 - Applied to NLP: QA, IE, MT, ...

MRDs vs Corpora vs Web2.0

	MRDs	corpora	wikis
size	small	~unlimited	big
subjectivity	~none	high	low
structure	high	none	medium
dynamic	no	no	yes

Language Resources

- Result of many man-years expert work
- Pay off effort <-> applicability?
 - Political, distribution, technical
- Technical
 - Formal validation
 - Automatic access methods (APIs)
 - Formalisation -> support reasoning

Interoperability

- Historical differences in formats, structures, semantic of categories in LRs
 - Barrier for sharing / interchanging
 - Lack coordination, competing practices, ...
- Inititatives
 - EAGLES, ISLE, PAROLE, ...
 - LMF, MAF, SynAF, SemAF, ...

Outline

- Intro
- Knowledge Acquisition bottleneck
- NEs, why NEs?
- Building MINELex
- Applying this to the real world
- Conclusions

NEs

- Usually refer to
 - Proper nouns: names of people, locations, organizations, ...
 - Numerical expressions: time, amounts, ...
- Important for NLP tasks
 - NE Recognition, subtask of Information Extraction

Why NEs?

- LRs lack info about NEs
 - "building a proper noun ontology is more difficult than building a common noun ontology as the set of proper nouns grows more rapidly" (Mann 02)
- NEs provide salient clues and have a special role in translation
- Stored Knowledge can be applied to NLP tasks

Why NEs?

- E.g. Question Answering
 - Who is Vigdis Finnbogadottir?
 - QA system
 - Linguistic analysis of text (Ferrandez 06)
 - "[...] presidents: Vigdis Finnbogadottir (Iceland), [...]"
 - Solution: Iceland
 - Possible related knowledge in LR
 - "Vigdis Finnbogadottir" instance_of: "president of Iceland", "icelandic", "female head of state"
 - LR can be useful within QA, for example to:
 - Find and validate answers

Outline

- Intro
- Knowledge Acquisition bottleneck
- NEs, why NEs?
- Building MINELex
- Applying this to the real world
- Conclusions

MINELex

MINELex

- LRs used...
 - WordNet en&es, SIMPLE it

Mapping

- Establish an initial link LR<->WK
- Lemma (PoS tagger)
 - actor <-> Actors, aquarium <-> Aquaria
- 65.4% (57.4% older dump) of target synsets linked. The rest?
 - 75% no matching category but page
 - 13% nothing
 - 10% PoS errors
 - 2% B.E. vs A.E.

Disambiguation

- A mapping might be ambiguous
 - e.g. obelisk -> Obelisks
 - 1.Stone pillar
 - 2. Character used in printing
- Simply take the MFS: ~65% acc. (YAGO)
- or... Automatic disambiguation
 - Instance intersection
 - Text similarity

NE Intersection

- Look for common NEs in WN and WK hyponymy chains
 - WN obelisk, WK Obelisks
 - WN obelisk1 -> {Washington Monument, ...}
 - WN obelisk2 -> {Ø}
 - WK Obelisks -> {Washington Monument, ...}
 - Disambiguation: WN sense1 <-> WK cat
- Eval set: 260 polysemous words
 - 100% P, 39% R
 - Few instances in WN...

Text similarity

Exploit definitions to disambiguate

```
<word id="obelisk">
```

<sense number="1">a stone pillar having a rectangular cross section
tapering towards a pyramidal top</sense>

<sense number="2">a character used in printing to indicate a cross
reference or footnote</sense>

<category id="Obelisks">An obelisk (Greek ὀβελίσκος , diminutive of ὀβελός , "needle") is a tall, narrow, four-sided, tapering monument which ends in a pyramidal top. Ancient obelisks were made of a single piece of stone (a monolith). </category>

Text similarity

- Set of representative methods
 - Textual Entailment system
 - Personalised PageRank
 - Semantic Vectors
 - Baselines
 - MFS, word overlap
 - Combinations
 - oracle, unsupervised, supervised, voting

Textual

- TE task: two texts (Hypothesis and Tesis)
- -> Decide if H entails T
- TE system used: several Inferences
 - Lexical distance measures: Euclidean,
 Smith-Waterman, ...
 - Semantic: WordNet similarity measures, verbs' similarities, ...
- Apply bidirectionally:
 - WordNet noun might imply Wikipedia category or the other way

Personalised Pagerank

- Graph-based algorithm over LR
 - Represents WordNet as graph
 - For each text computes PPR over graph, producing probability distribution over synsets
 - Compares how similar these two discrete probability distributions are by encoding them as vectors and computing the cosine between the vectors

Semantic Vectors

- LSA-like
- Tokenisation and indexing (term document matrix) by using Lucene
- Creates WORDSPACE model from matrix
- Uses Random Projection to perform dimension reduction
- Corpus for this task:
 - Glosses from WordNet (117,598)
 - Abstracts from WK 01/2008 (2,179,275)

Text similarity

Run	Accuracy
MFS	64.7%
Word Overlap	56.3%
Word Overlap (no stop words)	62.7%
Semantic Vectors	54.1%
PPR	61.8%
PPR (no stop words)	64.3%
TE (trained on TE corpus)	52.8%
TE (no training)	64.7%
TE (supervised)	77.74%

Text similarity

Run	Accuracy
Oracle (PPR+SV+TE+WO)	84.5%
Voting (PPR+SV+TE+WO)	66.5%
Voting (PPR+TE+WO)	68%
Unsupervised (PPR+SV+TE+WO)	65.2%
Unsupervised (PPR+TE+WO)	65.7%
Supervised (PPR+SV+TE+WO)	77.24%
Supervised (PPR+TE+WO)	77.11%

Extraction

- For each category mapped (and its subcategories*) extract articles and related data
 - Redirects: variants
 - Abstracts: definitions
 - Equivalents in other langs
- Subcategories not always hyponyms
 - Philosophers -> Philosophers by era
 - Philosophers -> Timelines of philosophers

Extraction

- Hyponym identification
 - Morphosyn. patterns
 - ^ category (" by " | " of " | " stubs\$")
 - philosophers by nationality, philosophers of mind
 - ^ (JJ|JJR|NN|NP)+ (CC(JJ|JJR|NN|NP)+)* " " category\$
 - Spanish philosophers
 - Similar patterns for es, it

- Identify which WK articles are NEs
 - Capitalisation norms (in some langs)
 - NEs -> proper nouns -> begin by uppercase
 - ¬NEs -> common nouns -> lowercase
 - Fetch article's title and redirects and look for occurrences
 - 1. In the WWW
 - 2. In its article body
 - 3. Combine

- Look for title in web search engine
 - Occurrences in first 50 hits
 - Begin with upper/lowercase + threshold
 - 76.7% P, 89.8% R
 - Drawback: noise due to sense variation
 - "Children's Machine" -> NE, laptop by OLPC
 - But in the WWW we might find: "... The children's machine ..."
 - Seymour Papert's book

- Look for title (and variants) in article's body (Bunescu & Pasca 06)
 - Exploit interlingual links
 - Whatever the lang compute occurrences in 10 langs that follow capitalisation norm
 - ca, en, es, fr, it, pt, sv, ...
 - More occurrences -> results more representat.
 - Almost language independent
 - Results
 - 76.5% P, 88.4% R

- Extract salient terms in article's body.
 Look for title + salient terms in WWW
 - TF-IDF corpus and stopword derived WK
 - e.g. "Children's Machine"
 - Salient terms: OLPC, 100\$ laptop, ...
 - Search:
 - "Children's Machine", OLPC, "100\$ laptop"
 - Hopefully we won't get hits regarding the book!
 - 79.17% P, 90.48% R
 - WWW: 76.7% P, 89.8% R
 - WK: 76.5% P, 88.4% R

Postprocessing

- Additional NEs
 - An extracted NE for lang a may extract a further NE in lang b
- Connect NEs to ontologies
 - Exploit mappings LRs to ontologies
 - SUMO -> English
 - SIMPLE -> Italian

The NE Lexicon

LexicalEntry

le id PoS

en_le_Tim_Robbins PN

FormRepresentation

written form variant type

en_Timothy_Francis_Robbins alias

en_Timothy_Robbins alias

en_Tim_Robbins full

Sense

sense id	resource	id in resource	definition
en_s_Tim_Robbin s	en_Wikipedia	269416	location = West Covina, California, United States

SenseRelation

source sense idrelation typetarget sense iden_s_Tim_RobbinsinstanceOfen_s_actor0_18en_s_Tim_RobbinsinstanceOfen_s_film_director0_18

en_s_Tim_Robbins instanceOf en_s_militant0_18
en_s_Tim_Robbins instanceOf en_s_screenwriter0_18

SenseAxis

senseaxis id senseaxis type
sa_853829 eq_syn

SenseAxisElements

senseaxiselements id		element	senseaxis id
	sae_1479620	en_s_Tim_Robbins	sa_853829
	sae_1479622	es_s_Tim_Robbins	sa_853829
	sae_1479624	it_s_Tim_Robbins	sa_853829

SenseAxisExternalReference

relation type
+
+

The NE Lexicon

The NE Lexicon

	EN	ES	ΙΤ
NEs	948,410	99,330	78,638
Written forms	1,541,993	128,796	104,745
Instance rels	1,366,899	128,796	139,190

- Postprocessing
 - NEs: 974,567 en, 137,583 es, 125,806 it
 - Ontolinks:
 - 814,251 SUMO, 42,824 SIMPLE
 - http://www.ilc.cnr.it/ne-repository/

Outline

- Intro
- Knowledge Acquisition bottleneck
- NEs, why NEs?
- Building MINELex
- Applying this to the real world
- Conclusions

Application to QA

- BRILIW QA system
 - Cross-lingual en-es
 - Ranked 1st at CLEF 2006
 - Syntactic patterns
 - Detect expected answer type
 - Extract answer
 - After Passage Retrieval

Application to QA

- Validation module with NE knowledge
 - Two types of questions
 - Expect NE as answer type
 - Who is the General Secretary of Interpol?
 - Ask definitions of NEs
 - Who is Vigdis Finnbogadottir?
 - An answer is assessed as:
 - UNKNOWN -> NE not found in MINELex
 - CORRECT -> NE found, type matches expected
 - INCORRECT -> NE found, type does not match
 - Can reorder the answers provided
 - CORRECT >> UNKNOWN >> INCORRECT

Application to QA

- Evaluation
 - CLEF 2006 question set
 - Validation improves accuracy by 28.1%

Example

Who is the General Secretary of Interpol?				
Answer	Validation	Reranking		
Organización Internacional de Policía Criminal	UNKNOWN	2		
Enrique Gómez	CORRECT	1		
Jefe de la Policía Interna	UNKNOWN	3		
Policía Internacional	UNKNOWN	4		

To conclude...

- Combination to circumvent KABP
 - Exploit wiki community & lexicographers
 - Contribute yourself:
 - Standards -> interoperability
- Practical case of study
 - "ingredients" + NLP machinery -> NE lex.
 - MINELex
 - Usefulness? -> QA

End

Thank you for listening! Questions, comments, ...?

Antonio Toral

{fistname.lastname}[at]ilc.cnr.it Istituto di Linguistica Computazionale - CNR, Pisa (Italy) Dep. Llenguatges i Sistemes Informàtics - Universitat d'Alacant (Spain)