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ABSTRACT

Phrase-based Statistical Machine Translation (PBSMT) sys-
tems represent the dominant approach in MT today. However,
unlike systems in other paradigms, it has proven difficult to
date to incorporate syntactic knowledge in order to improve
translation quality. This paper improves on recent research
which uses ‘syntactified’ target language phrases, by incor-
porating supertags as constraints to better resolve parse tree
fragments. In addition, we do not impose any sentence-length
limit, and using a log-linear decoder, we outperform a state-
of-the-art PBSMT system by over 1.3 BLEU points (or 3.51%
relative) on the NIST 2003 Arabic–English test corpus.

1. INTRODUCTION

Almost all research in MT being carried out today is corpus-
based. Within this field, by far the most dominant paradigm
is Phrase-based Statistical Machine Translation (PBSMT)
[6, 9, 12, 17]. However, unlike in rule- and example-based
MT, it has proven difficult to date to incorporate syntactic
knowledge in order to improve translation quality. For ex-
ample, [6] actually demonstrated that adding syntax harmed
the quality of their SMT system.

More recently, [2] demonstrates significant improvements
over the baseline by allowing for hierarchical phrase probabil-
ities to handle a range of linguistic phenomena in the correct
fashion. However, the derived grammar does not rely on any
linguistic annotations or assumptions, so that the ‘syntax’ in-
duced is not linguistically motivated.

Coming right up to date, [8] demonstrate that ‘syntacti-
fied’ target language phrases can improve translation quality
for Chinese–English. While this research has much in com-
mon with the approach proposed here, there remain a number
of significant differences: (i) rather than induce millions of
xRS rules from parallel data, we extract phrase pairs in the
usual manner [11] and associate with each phrase-pair a set of
target-language syntactic constituents based on supertags [1];
(ii) unlike [8], who restrict their experiments to sentences of
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max. 20 words, we do not impose any such sentence-length
limit; (iii) instead of using a CKY-style decoder, we deploy
a log-linear, left-to-right decoder [5, 10]; (iv) unlike [8], we
have no need to resort to ad hoc tree-rewriting measures in or-
der to provide a better interaction between ‘good’ (‘normal’
PBSMT) and ‘bad’ (xRS) rules.

The remainder of the paper is organised as follows: in
section 2, we detail our approach. Section 3 describes the
experiments carried out, together with the results obtained.
Section 4 concludes, and provides avenues for further work.

2. OUR APPROACH

As in any state-of-the-art PBSMT system, our approach ex-
tracts phrase correspondences from a bilingual training cor-
pus. We use the method of [11] to extract phrase correspon-
dences from bidirectional symmetrized word alignments ob-
tained via Giza++. While in principle any arbitrary (mono-
lingual source or target language, or bilingual) constraints
can be used in our approach, for the purposes of the exper-
iments described here, we use supertags [1] to decorate the
boundaries of these phrases to derive a set of target-language
syntactic constituents. As part of the translation process, we
use a log-linear decoder with an added cost function for these
constraints along with the ‘normal’ translation and language
models.

2.1. The Model

In this section we describe the model used more formally. Let
t and s be the target and source language sentences. Any
(target or source) sentence x will consist of two parts, a bag
of elements (words/phrases etc.) and an order over that bag;
in other words, x = 〈{x}, Ox〉, where {x} stands for the bag
of word tokens (or phrases) that constitute x, and Ox for the
order of the word tokens (respectively phrases) as given in x
(Ox can be implemented as a function from a bag of tokens
{x} to a set with a finite number of positions).

arg maxt P (t|s) = arg max〈{t},Ot〉
P ({s}, Os | {t}, Ot)P ({t}, Ot)

= arg max〈{t},Ot〉 P ({s} | {t}) P (Os | Ot) P (t)



P (t) = P ({t}, Ot) stands for the target language model,
P (Os|Ot) represents the conditional distortion probability,
and P ({s}|{t}) stands for a probabilistic translation model
from target language bags of phrases to source language bags
of phrases.

2.2. Language Modeling Using Supertags

Usually a language model over a finite vocabulary V assigns
a probability to every finite sequence of words in the formal
language V +, i.e. a language model implements a function
P : V + → [0, 1] such that

∑
x∈V + P (x) = 1. Language

models implemented using Markov models over bare word
sequences are common in both speech recognition and MT.
The statistics of such Markov models are based on frequen-
cies of n-grams. While language models over bare word se-
quences are robust and useful, they are not suitable for grad-
ing sentences on their grammatical well-formedness.

Naturally, language models may also incorporate gram-
matical structure. The problem usually is how much gram-
matical structure can be incorporated without resulting in
sparse statistics (and thereby losing the required robustness).
Within Markov-based language models, the (impoverished)
grammatical structure is usually assumed to consist of a fi-
nite set of word categories. Let C stand for the finite set of
word categories for words in the vocabulary V . A language
model can be obtained from the joint probabilities P (x, y),
for sequences x ∈ V n and y ∈ Cn (for all n ≤ 1) through
the formula P (x) =

∑
y∈Cn P (x, y) (thereby assuming that

the occurrences of word categories are mutually exclusive).
Hence, incorporating the word categories results in Hidden
Markov Models (HMMs) [15].

A popular linguistic approach for defining word cate-
gories (the set C) is via part-of-speech (POS) tag categories.
POS taggers based on HMMs are well-known in the liter-
ature [7]. An HMM POS tagger assigns a joint probabil-
ity P (x, y) to a sentence x ∈ V n and to a POS tag se-
quence y ∈ Cn, through the two-step generative process
P (x, y) = P (y)P (x|y), whereby P (y) is a Markov lan-
guage model over POS tag sequences and P (x|y) is the lex-
ical model, where probabilities of words are conditioned on
POS tags. However, the commonly used POS tags impose
only a very weak set of grammatical constraints (depending
on the kind of POS tags employed of course). In [1], a more
advanced linguistic alternative is proposed: Supertags.

A supertag stands for a complex, linguistic word cate-
gory that encodes a syntactic structure that unambiguously
expresses a specific local behaviour of a word, in terms of
the arguments (e.g., subject, object) it takes and the syn-
tactic environment in which it appears. A sequence of su-
pertags specifies “almost a parse” [1] in the sense that if the
ordered sequences of supertags combine together under the
combinatory operators (substitution and adjunction) of Tree-

Adjoining Grammar (TAG) [4], only a little extra effort is re-
quired in order to obtain the full parse tree that these supertags
specify.

While the original TAG that underlies the supertagging
approach is not directly employed within supertagging, the
conceptual way in which TAG describes language is crucial
for understanding what supertags are. In the original TAG
grammatical framework, the supertags are elementary trees
(grammar productions). A TAG consists of two disjoint finite
sets of elementary trees, initial and auxiliary. The initial el-
ementary trees combine through the well-known substitution
operation (as in Context-Free Grammars) and result in initial
sentences/trees that do not contain recursion (so called ad-
juncts, e.g. prepositional phrases and adjectival phrases). The
auxiliary elementary trees are recursive tree structures that
combine through the special adjunction operator and lead to
sentences/trees that contain recursion in the form of adjuncts.
Hence, a Lexicalized TAG system consists of a lexicon (the
initial and auxiliary elementary trees, each lexicalized with a
word from the language) and the two combinatory TAG op-
erators, substitution and adjunction. In the TAG system for
English, the lexicon consists of about 5000 supertags (unlex-
icalized elementary trees).

The supertagger of [1] is a standard HMM tagger and
consists of a (second-order) Markov language model over su-
pertags and a lexical model conditioning the probability of ev-
ery word on its own supertag (just like standard HMM-based
POS taggers). In this work, this supertagger is employed as
a language model, i.e. it assigns a probability to every input
word sequence as discussed above. Next we explain the de-
tails of how this supertag-based language model is integrated
into the decoder.

2.3. A Decoder Using Supertags

Our decoder is a log-linear decoder similar to Pharaoh [5],
with the main modification being the addition of a constraint-
based target language model. The decoder is built on the
MOOD framework described in [14]. During decoding three
feature costs are computed: the phrase translation probabil-
ity, the (‘regular’ trigram, backing off to lower orders) tar-
get language model probability and the supertag, constraint-
based target language model probability (5-gram, backing off
to lower orders).

3. EXPERIMENTS

3.1. Resources

We translated from Arabic to English, training the system on
180K sentences (5M words) of the Arabic–English news par-
allel corpus from the LDC. The n-gram target language model
was built using 250M words from the English GigaWord Cor-



pus using the SRI language modelling toolkit [16].1 Taking
10% of the English GigaWord Corpus used for building our
target language model, the supertag constraint-based target
language model was built from 25M supertags obtained via
the XTAG English supertagger.2

3.2. Baseline vs. Extended System

The baseline system that we use to compare our model is ex-
actly the same as the extended model minus the constraint-
based target language model. As an example, the baseline
system is trained on source–target phrases such as that in (1):

(1) Anh ATlE ⇔ that he briefed

For the improved model proposed here, the English phrase is
supertagged as in (2):

(2) that //IN-B-COMPs he //PRP//A-NXG
briefed //VBD//A-nx0Vnx1

The resultant constraints, therefore, would be those in (3):

(3) IN//B-COMPs PRP//A-NXG
VBD//A-nx0Vnx1.

3.3. Results

System BLEU Score
Baseline-60K .3756
S-PBSMT-60K .3888
Baseline-180K .4088
S-PBSMT-180K .4194

Table 1. Comparing the Baseline and S-PBSMT Systems: the
first pair of systems are trained on 60K sentence pairs, while
the second pair of systems are trained on 180K sentence pairs.

The results are given in Table 1. Training the baseline
and extended Syntactic PBSMT (S-PBSMT) systems on 60K
sentence pairs, and testing on 663 Arabic sentences (ave.
25 words, min. 4 words, max. 71 words)—the standard
NIST 2003 evaluation test set—the S-PBSMT system obtains
a BLEU score [13] of 0.3888, 1.32 points (or 3.51% rela-
tive) better than the baseline. When testing on 180K sentence
pairs, and testing on the same test set, the S-PBSMT system
scores 0.4194 for BLEU, 1.06 points (or 2.59% relative) bet-
ter than the baseline.3 Some sample output is given in Fig-
ure 1.

1http://www.speech.sri.com/projects/srilm/
2http://www.cis.upenn.edu/˜xtag/gramrelease.html
3We preprocessed all numbers so that they were classed as a single cate-

gory. Any OOV items which occurred in the test set were replaced by their
nearest Arabic form if in the vocabulary. All scores shown are for lowercased
English. Four reference translations were provided.

Reference: Saudi sources this week denied reports in the Amer-
ican New York Times that Saudi Arabia had agreed to allow the
United States to use Saudi military bases should a war against Iraq
take place.

Baseline: the saudis denied this week in new york times ,
saudi arabia agreed to lay down its military stock in the united states
in the event of war with iraq. american information published

S − PBSMT : the saudis denied information published this
week in new york times , saudi arabia agreed to lay down its military
in the united states , in the event of war with iraq . american

Reference: He added: “The position of the Kingdom re-
garding this matter has been clear from the beginning, and we are
not able to place our air space ......

Baseline: he added that “ saudi arabia clear of the this we
cannot be put our airspace ......

S − PBSMT : he added that ” the attitude of the kingdom
is clear this we cannot be put our airspace ...

Fig. 1. Sample Output

4. CONCLUSIONS AND FUTURE WORK

Despite being the dominant approach in MT today, developers
of PBSMT systems have found it difficult to integrate syntac-
tic knowledge with a resultant increase in translation quality.
[8] have recently demonstrated that ‘syntactified’ target lan-
guage phrases can improve translation quality for Chinese–
English.

In this paper, we have improved on the method of [8]
by imposing no sentence-length limit, and employing a log-
linear, left-to-right decoder instead of a CKY-style decoder.
In a series of experiments, we have shown how syntactic con-
straints in the form of supertags can improve translation qual-
ity for Arabic–English by between 2.6% and 3.5% relative
BLEU score.

Furthermore, while only using target language constraints
here, our architecture allows for any constraints to be inte-
grated into a PBSMT system. In future work, we intend to
factor in source language constraints, as well as bilingual con-
straints induced via the DOT alignments of [3]. Other con-
straints could be included via by leaf path projection [18];
note that both these approaches allow for long-distance de-
pendencies to be handled successfully. Finally, we hope to in-
vestigate more sophisticated scoring methods for handling the
constraints, such as ‘almost parsing’ techniques using finite-
state machines.
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