
GF-DOP: Grammatical Feature Data-Oriented Parsing

Rı́ona Finn, Mary Hearne, Andy Way and Josef van Genabith

National Centre for Language Technology,
School of Computing,

Dublin City University

Proceedings of the LFG06 Conference

Universität Konstanz

Miriam Butt and Tracy Holloway King (Editors)

2006

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

This paper proposes an extension of Tree-DOP which approximates the LFG-DOP model. GF-DOP
combines the robustness of the DOP model with some of the linguistic competence of LFG. LFG
c-structure trees are augmented with LFG functional information, with the aim of (i) generating
more informative parses than Tree-DOP; (ii) improving overall parse ranking by modelling gram-
matical features; and (iii) avoiding the inconsistent probability models of LFG-DOP. In a number
of experiments on the HomeCentre corpus, we report on which (groups of) features most heavily
influence parse quality, both positively and negatively.

1 Introduction
This paper proposes an extension of Tree-DOP [e.g. Bod, 1992, 1998] which approximates the LFG-
DOP model [Bod and Kaplan, 1998, 2003]. GF-DOP combines the robustness of the DOP model with
some of the linguistic competence of LFG. LFG c-structure trees are augmented with LFG functional
information, with the aim of (i) generating more informative parses than Tree-DOP; (ii) improving
overall parse ranking by modelling grammatical features; and (iii) avoiding the inconsistent prob-
ability models of LFG-DOP. In a number of experiments on the HomeCentre corpus, we report on
which (groups of) features most heavily influence parse quality, both positively and negatively.

The remainder of the paper is organised as follows. In section 2, we describe the Tree-DOP
model. An overview of LFG-DOP is provided in section 3, and the new GF-DOP model is described
in section 4. We motivate the experiments carried out on the HomeCentre corpus in section 5, and
provide results and evaluation in section 6. Finally, we conclude and list a number of avenues for
further work.

2 Tree-DOP
Data-oriented models of language [e.g. Bod, 1992, 1998] are based on the assumption that humans
perceive and produce language by availing of previous language experiences rather than abstract
grammar rules. These models exploit large treebanks comprising linguistic representations of pre-
viously occurring utterances. Analyses of new input sentences are produced by combining fragments
from the treebank; the most probable analysis is determined using the relative frequencies of these
fragments.

The tree fragments used in Tree-DOP are called subtrees. Two decomposition operators are used
in order to produce subtrees from sentence representations:

1. the root operator which takes any node in a tree to be the root of a subtree and deletes all nodes
except this new root and all nodes dominated by it;

2. the frontier operator which selects a (possibly empty) set of nodes in the newly created subtree,
excluding the root, and deletes all subtrees dominated by these nodes.

As an example, the complete set of DOP fragments which can be derived from the representation of
John swims is shown in (1).

S

NP VP

John V

swims

S

NP VP

John V

S

NP VP

John

S

NP VP

S

NP VP

V

swims

S

NP VP

V

NP

John

VP

V

swims

VP

V

V

swims
(1)

Representations for new input are formed by combining other fragments using the composition
operator, namely leftmost substitution, which ensures that each derivation in DOP is unique. The
composition of trees t1 and t2 (t1 ◦ t2) is only possible if the leftmost frontier node of t1 and the root
node of t2 are of the same category. The resulting tree is a copy of t1 where t2 has been substituted
at its leftmost nonterminal frontier node, as demonstrated in (2).

S

NP VP

John V

◦

V

swims
=

S

NP VP

John V

swims

(2)

The probability of a derivation is the joint probability of choosing each of the subtrees involved
in that derivation. Letting |e| be the number of times subtree e occurs in the corpus and r(e) be the
root node category of e, the probability assigned to e is as in (3).1

P (e) =
|e|∑

u:r(u)=r(e) |u|
(3)

The probability of a derivation is the product of the probabilities of choosing each of the subtrees
involved in that derivation. Thus, the probability of a derivation t1 ◦ ... ◦ tn is given by (4).

P (t1 ◦ ... ◦ tn) =
∏

i

P (ti) (4)

A parse tree can potentially be generated by many different derivations, each of which has its own
probability of being generated. Therefore, the probability of a parse tree T is the sum of the proba-
bilities of its distinct derivations as in (5).

P (T) =
∑

D derives T

P (D) (5)

3 LFG-DOP
The LFG-DOP model differs from the Tree-DOP model in that the assumed corpus is annotated with
LFG representations, i.e. <c,φ,f> triples comprising c-structure, φ-links and f-structure. The defi-
nitions of the fragmentation operators and composition operator, along with the probability model,
must be adapted accordingly.

The fragmentation operators for LFG-DOP are extensions of those used in Tree-DOP as we wish
to extract exactly the same set of generalised c-structure fragments as before. However, we also
wish to extract the corresponding f-structure fragment to go with each c-structure. Consequently,
the original root and frontier operators must be extended to take f-structure into account. Many
different extensions can be envisaged; those defined in [Bod and Kaplan, 1998, 2003, Bod, 2000b,a]
are as follows:

Root Given a copy of the example-base representation <c,φ,f> named <ccopy,φcopy ,fcopy>:

1. select a node in ccopy to be root and delete all nodes except this node and the nodes it dominates;

2. delete all links in φcopy which link deleted c-structure nodes to fcopy;
1We use this estimation method for all experiments presented in this paper, although others (e.g. [Zollmann and Sima’an,

2005]) are possible.

3. delete all f-structure units in fcopy which are not φ-accessible from ccopy;

4. delete all semantic forms in fcopy which are local to f-structure units corresponding to erased
c-structure terminals.

Frontier Given a representation of the form <ccopy,φcopy,fcopy> created by the root operation:

1. select a (possibly empty) set of nodes in ccopy to be frontier nodes and delete all nodes dominated
by these newly-created frontier nodes;

2. delete all links in φcopy which link deleted c-structure nodes to fcopy;

3. (delete all f-structure units in fcopy which are not φ-accessible from ccopy;)

4. delete all semantic forms in fcopy which are local to f-structure units corresponding to erased
c-structure terminals.

Step 3 of the frontier operation is given here for the sake of completeness; as a consequence of
the definition of φ-accessibility given in [Bod and Kaplan, 1998, 2003, Bod, 2000b,a] and described
below, the root node of ccopy (selected during the root operation) accesses all f-structure units in fcopy

regardless of which nodes are selected by the frontier operation. This definition of φ-accessibility is
as follows:

φ-accessibility An f-structure unit f is φ-accessible from c-structure node n if and only if

1. n is φ-linked to f , i.e. φ(n) = f , or

2. n is φ-linked to fx and f contains fx i.e. there is a chain of attributes leading from f to fx.

The extended root and frontier operations for LFG-DOP yield precisely the same c-structures as
are yielded by the root and frontier operations defined for Tree-DOP. However, it is also possible to
extract further fragments from each fragment yielded by the root and frontier operations via the
discard operation. Discard is used to delete attribute-value pairs from the f-structure whose values
are not φ-linked to remaining nodes in the c-structure and are not surface forms corresponding to
c-structure terminals. Thus, when discard is applied to any fragment <c,φ,f>, a new fragment
<c,φ,fdx

> is extracted; the c-structure and φ-links are unchanged but fdx
differs from f in that all

attribute-value pairs in fdx
are also in f but the reverse does not hold, i.e. it is not the case that all

attribute-value pairs in f are also in fdx
.

The LFG-DOP composition operation involves two stages: leftmost substitution over c-structure
and recursive unification over f-structure such that the φ-links are not broken. That is, a pair of
c-structures are first composed exactly as for Tree-DOP and, subsequently, the f-structure parts of
those fragments are unified. Any sequence of composition operations yielding a complete deriva-
tion (i.e. one which contains no open c-structure substitution sites) is only valid if that derivation’s
f-structure adheres to the LFG well-formedness conditions. However, the presence in the fragment
base of discard-generated fragments means that many input strings which are ill-formed with re-
spect to the corpus can also be parsed.

We can estimate LFG-DOP fragment probabilities as for Tree-DOP, i.e. compute their empirical
frequencies conditioned on the root node. However, this estimator draws no distinction between
fragments generated by the root and frontier operators and discard-generated fragments. Frag-
ments generated by discard effectively relax the constraints specified in the f-structure to allow the
fragment to be used in a wider variety of contexts and so are very useful in constraint-based DOP

parsing. Intuitively, however, they should only be considered when no parse can be produced which
satisfies all relevant constraints, i.e. they should be used only when the input is ill-formed with re-
spect to the corpus. Consequently, this estimator does not seem entirely appropriate. Way [1999]
and Bod and Kaplan [2003] propose an alternative method – termed ‘discounted RF’, as opposed to
‘simple RF’ – of estimating fragment probabilities whereby root and frontier fragments are treated
as seen events and discard fragments as unseen events. The fragment set is partitioned using this
distinction and two separate probability distributions induced. The probabilities of seen events are
estimated by their relative frequencies as before. However, these probabilities are then discounted
and the discounted mass distributed amongst the unseen events, i.e. the discard-generated frag-
ments.

In the Tree-DOP model, valid derivations are constructed by composing fragments such that the
category-matching condition is fulfilled. Each valid derivation is assigned a probability by calculat-
ing the product of the probabilities of the fragments used in the construction of that derivation. The
probabilities of all valid derivations which can be constructed from a given DOP grammar for all of
the strings which it recognises sum to 1.

Each LFG-DOP derivation probability is also calculated as the product of the probabilities of
the fragments used in the construction of that derivation. In the LFG-DOP model, however, we
have seen that valid derivations are constructed by composing fragments such that the category-
matching, uniqueness, completeness and coherence conditions are fulfilled. If we calculate LFG-
DOP fragment probability distributions in the same way as we did for Tree-DOP – i.e. define distri-
butions over root node category – then the probabilities of all derivations for all the strings recog-
nised by the grammar which adhere to the category-matching condition will sum to 1. However, it
is not the case that all of these derivations are valid according to the LFG-DOP model as they may
not fulfil the uniqueness, completeness and coherence conditions. Consequently, the probabilities of
all valid derivations which can be constructed from a given LFG-DOP grammar for all of the strings
which it recognises no longer sums to 1 and, therefore, do not constitute a probability distribution.
[Bod and Kaplan, 1998, 2003] handle this by normalisation: parse probability is divided by the sum
of the probabilities of all valid parses for the input string. However, Abney [1997] observes that
normalisation serves only to mask the fact that, unlike for the context-free case, establishing prob-
abilities for grammars encoding context-sensitive dependencies using relative frequency estimation
does not yield the best weights.

4 GF-DOP
The GF-DOP model can be seen as an extension of the Tree-DOP model, and an approximation
towards LFG-DOP. It combines the robustness of the DOP model with some of the linguistic com-
petence of LFG. This model exploits a treebank transformed by the addition of further linguistic
information: features are extracted from f-structures and appended to the c-structure category la-
bels to form a new, extended set of c-structure category labels. As this model extends the Tree-DOP
model, category-matching is the only restriction imposed on fragments which are candidates for
composition. No restrictions are placed on the category labels, so labels which incorporate features
incur no extra processing and no changes to the model are required to handle the new set of ex-
tended category labels. The Tree-DOP model is applied to the transformed treebank. This model
can be as accurately and efficiently implemented as the Tree-DOP model, and produces linguistically
informed output based on identification and incorporation of grammatical functions and features.

ROOT

Sadj PERIOD

S .

NP VP

PRON VPcop

this Vcop NP

is D NPadj

a NPzero

Nmod N

N feature

safety

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

PRED ‘be<[feature]>’ [pro]

SUBJ

2

6

6

6

6

6

6

6

6

6

6

4

PRED ‘pro’
CASE nom
DEIXIS proximal
NUM sg
PERS 3
PRON-FORM this
PRON-TYPE demon

3

7

7

7

7

7

7

7

7

7

7

5

TNS-ASP

2

6

6

6

4

MOOD indicative
PERF -
PROG -
TENSE pres

3

7

7

7

5

XCOMP

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

PRED ‘feature<[pro]>’

COMPOUND

2

6

6

6

6

6

6

6

6

6

6

4

PRED ‘safety’
NTYPE

h

GRAIN mass
i

SPEC
h

SPEC-TYPE def
i

ANIM -
NUM sg
PERS 3

3

7

7

7

7

7

7

7

7

7

7

5

NTYPE
h

GRAIN count
i

SPEC
"

SPEC-FORM a
SPEC-TYPE indef

#

SUBJ [pro]
ANIM -
NUM sg
PERS 3

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

LAYOUT-TYPE unspec
PASSIVE -
STMT-TYPE declarative
VTYPE copular

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 1: A c-structure with its corresponding φ-linked f-structure, from which we extract features.

4.1 Feature Classification
F-structures contain informative features (for example LAYOUT-TYPE may specify that this sentence
is a header, a list item or is unspecified) and functional information (such as SUBJ and OBJ) which
describe the grammatical functions of the constituents in question. A linked c-structure and f-
structure representation can be seen in Figure 1; this representation contains examples of each of
the 5 feature classes identified:

• grammatical functions, e.g. SUBJ, XCOMP,

• atomic features, e.g. NUM=sg, PERS=3,

• lexical features, e.g. PRON-FORM=this, SPEC-FORM=a,

• ‘super features’ (or non-grammatical function features) which have an f-structure containing a
group of features as their values,
e.g. TNS-ASP[MOOD=imperative, PERF=-, PROG=-], NTYPE[GRAIN=count],

• predicates, e.g. PRED ‘be<[feature]>’[pro], PRED ‘feature<[pro]>’.

4.2 Annotating with Grammatical Features
4.2.1 Grammatical functions

Using φ-linked f-structure units, we identify functions of constituents within the c-structure. For
example, the leftmost NP in the c-structure representation in Figure 1 functions as the SUBJ of
‘be’. We transform the tree by appending this information to the syntactic category label, giving
‘NP SUBJ’. We place the annotation on the topmost node in the constituent which corresponds to the

(A) ROOT

Sadj PERIOD

S .

NP SUBJ SUBJ VP

PRON VPcop

this Vcop NP XCOMP

is D NPadj

a NPzero

Nmod COMPOUND N

N feature

safety

(B) ROOT

Sadj PERIOD

S .

NP VP

PRON NUM=sg PERS=3... VPcop

this Vcop PASSIVE=-... NP

is D NUM=sg PERS=3... NPadj

a NPzero

Nmod N NUM=sg PERS=3...

N NUM=sg PERS=3... feature

safety

Figure 2: (A) Illustration of a c-structure with functional annotations on the top-most nodes of ap-
propriate constituents. (B) Illustration of a c-structure with atomic annotations on the
preterminal nodes.

function in question. All nodes dominated by this annotated node are part of the constituent which
fulfils this function.

Where a constituent fulfils more than one function in the sentence, we append a label for each
function to the top-most node in the constituent which serves that function. Upon further exami-
nation of the f-structure, we see that the NP node also functions as the SUBJ of ‘feature’; this label
becomes ‘NP SUBJ SUBJ’. A c-structure annotated with functions can be seen in Figure 2 (A).

4.2.2 Atomic features

The second class of features is atomic features. These features have a small set of closed class items
as possible values; for example the feature PERS can only ever have the value 1, 2 or 3. We annotate
pre-terminal nodes with atomic features, as these nodes are closest to the terminals to which the
annotations specifically apply. A single atomic feature may apply to more than one node; in this
case, each such node receives the atomic annotation.

Looking at the φ-linked f-structure for the sentence in Figure 1, we see that the outermost f-
structure is linked to the ROOT node, which dominates all other nodes. If we consider the features
which lie within this f-structure unit, but outside other inner units, it might appear that the features
LAYOUT-TYPE, PASSIVE, STMT-TYPE and VTYPE should be annotated on all pre-terminal nodes, even
to those which, logically, we know to be unrelated; for instance, we know that determiners, such as
the terminal a, do not have a PASSIVE quality. However, this does not occur in a practical imple-
mentation of the GF-DOP model. Nodes which correspond to inner f-structure units are φ-linked to
their respective f-structure units, rather than the outermost unit which dominates them. In the c-
structure shown in Figure 1, only the Vcop node receives these annotations, as illustrated in Figure
2 (B).

Although the pre-terminal PERIOD is also dominated by this f-structure unit, and not φ-linked to
any other unit, we do not annotate pre-terminals of punctuation.

(A) ROOT

Sadj PERIOD

S .

NP VP

PRON PRON-FORM=this VPcop

this Vcop NP

is D SPEC-FORM=a NPadj

a NPzero

Nmod N SPEC-FORM=a

N feature

safety

(B) ROOT

Sadj PERIOD

S .

NP VP

PRON VPcop

this

Vcop MOOD=indicative PERF=-... NP

is

D GRAIN=count SPEC-TYPE=indef NPadj

a NPzero

Nmod N GRAIN=mass...

N GRAIN=mass SPEC-TYPE=def feature

safety

Figure 3: (A) Illustration of a c-structure with lexical annotations on pre-terminal nodes. (B) Il-
lustration of a c-structure with super-feature value atomic annotations on pre-terminal
nodes.

4.2.3 Lexical features

The third class of features is lexical features. These features have one of a small number of lemmas
as their values; for example, CONJ-FORM can have one of and, or, and-or, then, plus or null as its
value. Lexical annotations are placed on the pre-terminal nodes dominating the terminals they
relate to. An example of a lexically annotated c-structure can be seen in Figure 3 (A); the PRON-
FORM is specified as this. The SPEC-FORM used with feature is specified as a, also indicated on this
c-structure. Where a lexical feature applies to two or more nodes, each node is annotated with this
feature.

4.2.4 Super-features

We call the fourth class ‘super-features’. These features have a set of atomic features as their
value. Intuitively, it is more useful to annotate the node with the contents of the super-feature’s
f-structure value: rather than identifying that a node has, for example, tense and aspect, de-
noted by the feature TNS-ASP, we annotate it with the features which define the tense and aspect:
Vcop MOOD=indicative PERF=- PROG=- TENSE=pres. These features are added in the same manner
as the other atomic features, as described in section 4.2.2. An example of these annotations can be
seen in Figure 3 (B); the features which describe the tense and aspect are annotated on the Vcop
node, rather than on the VP or VPcop nodes. If these features were added to the VP or VPcop nodes,
it would imply that the other constituents dominated by VP or VPcop also have tense and aspect.

4.2.5 Predicates

A final, single feature class contains the PRED feature. This feature has a lemma as its value, but
it differs from the lexical features described in section 4.2.3 because lexical features can have only

a small number of lemmas, essentially a closed class set, as their values, while PRED can have any
lemma as its value. The PRED feature may also have subcategorisation arguments; this is a list of
arguments which are required by the predicate.

Let us consider the annotation possibilities for this feature. From the PRED we can establish the
lexical word, the list of obligatory arguments, and adjuncts. There is perhaps no great advantage
in extracting the lexical word from the value, as this word features in the c-structure as a termi-
nal. However, the list of arguments might be used to specify the context in which this word can
appear. For example, if we encounter a sentence with the word eat, we might use the subcategori-
sation requirements to check that the sentence also has some node which is labelled SUBJ of eat
and a node labelled OBJ of eat. However, the GF-DOP model presented here does not make use of
subcategorisation information.

4.3 Preserving Robustness
Data-sparseness is a prominent issue in parsing and is exacerbated by the highly specific node
labels in GF-DOP. The GF-DOP model’s use of additional feature information could lead to reduced
coverage, i.e. there may be sentences which can be parsed by the Tree-DOP model but not the GF-
DOP model. This would constitute a weakness in the GF-DOP model. To address this issue and
preserve robustness, we further extend the GF-DOP model by introducing a ‘backing-off ’.

We achieve this via a two-step training procedure: we extract grammars from both the anno-
tated treebank and a version of the treebank with the annotations stripped away. We merge these
grammars by assigning the majority of the probability mass (W1) to the annotated grammar and
the remainder (W2 = 1 − W1) to the unannotated grammar. This ensures that the GF-DOP model
maintains the same level of coverage as the Tree-DOP model.

4.4 How does GF-DOP improve on Tree-DOP?
When compared to the Tree-DOP model, GF-DOP has the following advantages:

1. it has the capacity to generate more informative parses;

2. its probability model is sensitive to grammatical feature information which can help to improve
the overall parse ranking;

3. it displays the above advantages without losing any of the coverage of the Tree-DOP model.

The Tree-DOP model is limited by the representations it assumes. The GF-DOP model trains on
data with a greater degree of linguistic information than the Tree-DOP model and, consequently, the
parses it generates contain more information than those of Tree-DOP. This additional information
also plays a part in determining the basic phrase-structure tree assigned to the input string: bet-
ter parses which are supported by the additional grammatical feature information will have their
probabilities boosted and, correspondingly, those which are not supported by these features will be
ranked lower. Finally, we note that these advantages do not, as might have been expected, come at a
cost in terms of robustness. Back-off is integral to the model and it ensures that all sentences which
can be parsed by Tree-DOP can also be parsed by GF-DOP.

4.5 How does GF-DOP improve on LFG-DOP?
The GF-DOP model also improves on the LFG-DOP model:

1. Due to difficulties in establishing a valid probability model, there is currently no satisfactory
realisation of an LFG-DOP system. In contrast, the GF-DOP model maintains the integrity of
the original Tree-DOP probability model.

2. The implementation of discard in LFG-DOP is computationally expensive: exponentially many
more fragments are generated than for Tree-DOP. Although the integration of back-off into the
GF-DOP model increases the number of fragments, the resulting grammar contains at most
double the number of fragments of the Tree-DOP model.

LFG-DOP’s strength comes from the information contained in the assumed representations and
the corresponding extensions to fragmentation and composition. The unification of features en-
sures well-formed grammatical parses are generated. However, not all LFG-DOP derivations unify
globally, or they may fail to meet (one or more of) the three well-formedness conditions required
to produce a valid parse. Because these ill-formed derivations are excluded as they are encoun-
tered, probability mass is lost; the probability distribution of derivations does not correspond to the
probability model.

The GF-DOP model, in contrast, enforces only category-matching during composition. As a re-
sult, only valid derivations are constructed. In this way, we make use of available feature and func-
tional information, while avoiding the probabilistic difficulties which arise due to the generation of
invalid parses.

A correspondence can be drawn between the ‘backing-off ’ technique employed in the GF-DOP
model and the ‘discounted RF’ technique employed in the LFG-DOP model in that both assign a
limited proportion of the available probability mass to fragments which are unseen in the treebank.
There is, however a crucial difference: exponentially many fragments are generated using discard
because all possible combinations of attribute/value pair deletion are applied whereas this is not the
case for GF-DOP back-off because all feature annotations are deleted simultaneously. This renders
the GF-DOP model less powerful but more computationally tractable.

4.6 The GF-DOP hypothesis
Having outlined the theoretical characteristics and advantages of the GF-DOP model, we hypothe-
sise that this new model will:

1. give us better phrase-structure tree parse accuracy than the Tree-DOP model and

2. allow us to learn grammatical features with a high degree of accuracy.

5 Experiments
We have carried out a set of experiments in order to determine whether the theoretical advantages
of GF-DOP outlined in Section 4 are reflected in the performance of the model. In this section, we
describe the data and parser used to carry out these experiments.

5.1 The Data
The treebank used in the experiments presented here is the English section of the Xerox Home-

Centre corpus. This treebank consists of 980 sentences annotated with c-structures and correspond-
ing φ-linked f-structures. In this data-set, 75 features (excluding PRED) were identified. These
features were divided into 4 classes. This classification can be seen in Table 1. As stated in section

Functions Atomic Features Lexicalised Features Super-Features

ADJUNCT OBL-AGT ABBREV DEIXIS NUM PSEM COMP-FORM ARG-EXT
APP OBL-COMP ACONSTR EMPH NUMBER-TYPE PTYPE CONJ-FORM ARGS-INT
COMP PRON-INT ADEG-DIM EMPHASIS PASSIVE SPEC-TYPE CONJ-FORM-COMP ASPECT
COMP-EX PRON-REL ADEGREE FIN PERF STMT-TYPE PCASE DEP
COMPOUND SUBJ ADJUNCT-TYPE GEND PERS TEMPORAL PRECONJ-FORM NON-DEP
OBJ TOPIC-INT ADV-TYPE GERUND POL TENSE PREDET-FORM NTYPE
OBJ2 TOPIC-REL ANIM GRAIN PREDET-TYPE TIME PRON-FORM PREDET
OBL XCOMP ATYPE INF PROG TYPE PRT-FORM SPEC

AUX-FORM LAYOUT-TYPE PRON-TYPE VFORM SPEC-FORM TNS-ASP
CASE MOOD PROPER VTYPE

NEG-FORM

Table 1: Classification of 75 features identified in the English section of the data set.

4.2.4, we do not annotate with super-features explicitly; rather we use the features listed within
their f-structure values. In addition to these, there are 5 other features we do not use:

• AUX-FORM: although this feature is a form like most of the lexical features, only one value is
possible: contracted. This feature is used to indicate that an auxiliary form is contracted, for
example here’s rather than here is, or you’re instead of you are. This feature occurs only 11
times in the data-set. We manually ‘cleaned up’ the corpus by removing all contracted forms
from the c-structures, thus this f-structure feature is no longer relevant. In addition, this step
helps slightly counteract the effect of data-sparseness.

• NEG-FORM: like AUX-FORM, NEG-FORM has contracted as its only value. This feature works in
the same way as AUX-FORM: it indicates that a negative form has been contracted, for example
doesn’t rather than does not, or don’t in place of do not. This feature occurs only 14 times in the
data-set. We removed occurrences of contracted negative forms from the c-structures, making
this f-structure feature redundant, and again modestly reducing the effects of data-sparseness.

• VFORM: despite this feature being called a form, it appears to behave more like an atomic
feature in that it has a small set of non-lexical values: presp, base, passp and perfp. Upon
examination of the corpus, we found that this feature was contained in f-structure units which
were neither linked to the main f-structure unit, nor to any c-structure nodes. As this feature
is not connected to c-structure nodes either directly, via φ-links, or indirectly, through another
f-structure unit which is φ-linked to some c-structure node, we do not generate a corpus an-
notated with this feature. Any such corpus would essentially be the same as the baseline
(original, unannotated) corpus.

• FIN: this atomic feature occurs in f-structure units which are not linked to the main f-structure,
and are not linked to any c-structure nodes. Thus we do not generate a corpus annotated with
this feature.

• INF: this atomic feature occurs in the same situations as FIN, i.e. in f-structure units which are
not linked to the main f-structure, or linked to c-structure units. We do not generate a corpus
annotated with this feature.

Thus, the number of features we use in generating treebanks annotated with only a single feature
is 61, and these features are listed and classified in Table 2. In addition, we generate 3 multi-feature

Functions Atomic Features Lexicalised Features

ADJUNCT OBL-AGT ABBREV DEIXIS NUMBER-TYPE PSEM COMP-FORM
APP OBL-COMP ACONSTR EMPH PASSIVE PTYPE CONJ-FORM

COMP PRON-INT ADEG-DIM EMPHASIS PERF SPEC-TYPE CONJ-FORM-COMP
COMP-EX PRON-REL ADEGREE GEND PERS STMT-TYPE PCASE

COMPOUND SUBJ ADJUNCT-TYPE GERUND POL TEMPORAL PRECONJ-FORM
OBJ TOPIC-INT ADV-TYPE GRAIN PREDET-TYPE TENSE PREDET-FORM
OBJ2 TOPIC-REL ANIM LAYOUT-TYPE PROG TIME PRON-FORM
OBL XCOMP ATYPE MOOD PRON-TYPE TYPE PRT-FORM

CASE NUM PROPER VTYPE SPEC-FORM

Table 2: List and classification of the 61 features for which we generated singly-annotated tree-
banks.

treebanks: one with all the functional annotations listed in Table 2, one with the five functions most
prevalent in the data (ADJUNCT, OBJ, SUBJ, COMPOUND and XCOMP) and one annotated with the
SUBJ and OBJ functions.

5.2 Experimental set-up
From the training treebank we generated eight training sets of 890 sentences each and eight cor-
responding test sets of 90 sentences each. The splits were generated at random2 such that every
word in the test set is present in the corresponding training set, thus avoiding the issue of unknown
words at this time.

For each feature presented in Table 2, an annotated corpus was created and the eight pre-
established splits applied. For each split, the parser is trained on the training set, tested on the
test set and evaluated on the corresponding reference set. Scores are then averaged over the eight
splits for each annotation type.

5.3 Parser details
Training our DOP parser involves extracting the DOP fragment set and associating probabilities
with each fragment. Testing then involves submitting one or more sentences to the parser, applying
the fragment set to establish a parse forest and selecting the best parse from that forest to output.
There are a number of methodologies available to us (e.g. [Bod, 1995], [Sima’an, 1995, 1999], Good-
man [1996, 1998, 2003]) in implementing our DOP system. Details of the parser used to perform the
GF-DOP experiments presented in this paper are given below.

5.3.1 Training

Goodman [1996, 1998, 2003] describes a method by which the DOP grammar projected from a tree-
bank in which all trees are binary branching is reduced to a PCFG containing at most eight rules for
each node in the training data. This PCFG is equivalent to the DOP grammar in that a) it generates
the same strings with the same probabilities and b) it generates the same parse trees with the same
probabilities, although one must sum over several PCFG trees for each DOP tree.

Goodman PCFG-reductions are constructed as follows. Every node in every tree in the treebank
is assigned a unique address: A@k is the node labelled A at address k. One new non-terminal Ak

2The eight test sets of 90 sentences each are not disjoint; because they were extracted at random, it is entirely possible
that they overlap to some extent.

is created for every node in the treebank; such non-terminals are called “interior” nodes and the
original nodes “exterior” nodes. ak is the number of subtrees with root node A@k and a the number
of subtrees with root node label A, i.e. a =

∑
j aj . Given node A@k with a set CH of two or more

children CH = {B@l...C@m}, the number of fragments ak which have root node A@k is calculated
by multiplying the numbers of fragments yielded by each of its children: ak =

∏
X@n∈CH(xn + 1).

A@j

B@k C@l

(6)

For any node grouping such as the one in (6), the eight PCFG rules and their corresponding proba-
bilities in (7) are then extracted; Goodman provides proofs by induction that the rule probabilities
are valid.

(1) Aj −→ BC (1

aj
)

(2) Aj −→ BkC (bk

aj
)

(3) Aj −→ BCl (cl

aj
)

(4) Aj −→ BkCl (bkcl

aj
)

(5) A −→ BC (1

a
)

(6) A −→ BkC (bk

a
)

(7) A −→ BCl (cl

a
)

(8) A −→ BkCl (bkcl

a
)

(7)

These rules correspond to the eight possible contexts in which the node grouping in (6) can occur
in fragments extracted from the corresponding treebank tree; each of the three nodes can be either
interior or exterior (i.e. root node or substitution site) to any fragment in which the grouping occurs.
The examples in (8) illustrate the contexts to which rules (3) – (6) in (7) correspond. Node A@j is an
interior (i.e. non-root) node in rules 3 and 4 and an exterior (i.e. root) node in rules 5 and 6 – the
parent node of any grouping (the node which appears on the left-hand side of the rule) corresponds to
either a root or internal node but not a substitution site. Conversely, the child nodes of each group-
ing, which appear on the right-hand side of the corresponding rules, can be either internal nodes
or substitution sites but never root nodes as shown in (8). As previously stated, Goodman’s PCFG
reduction requires the projection of at most eight rules for each node in the treebank. The maximum
number of rules are projected from each node which is internal to a treebank tree and dominates
two non-terminal children; four rules are projected from each node corresponding to the root node of
a treebank tree, as this node can never be internal to a fragment, and two rules are projected from
nodes dominating a single terminal symbol as terminal symbols are never substitution sites.

(3)

...

... A@j

B@k C@l

... ...

(4)

...

... A@j

B@k C@l

...

(5)
A@j

B@k C@l
(6)

A@j

B@k C@l

... ...

(8)

A PCFG-reduction derivation is isomorphic to a DOP derivation if for every substitution of a
DOP fragment there is a corresponding sub-derivation in the PCFG. In other words, each PCFG
sub-derivation yielding a subtree whose internal nodes are all of the form Xy, whose root node is of
the form X and whose frontier nodes are either of the form X or are terminal symbols, corresponds
exactly to a DOP fragment when the subscripts are removed. Furthermore, each such PCFG sub-
derivation has exactly the same probability as the DOP fragment to which it corresponds.

Thus, for each of the eight training splits for each annotation type, we induced a GF-DOP gram-
mar as follows:

1. binarise the training trees;

2. extract a PCFG-reduction from the annotated trees;

3. strip away the feature annotations from the treebank and extract a PCFG-reduction from the
unannotated trees;

4. merge the extracted grammars with weights W1 = 0.99 and W2 = 0.01.

5.3.2 Parsing

During parsing, the GF-DOP grammar described above is applied to the input string and a deriva-
tion forest is built using the CKY and Viterbi algorithms in combination. Viterbi allows us to prune
the derivation space as it is built such that the final derivation space contains the single best deriva-
tion for the input string. This is achieved by pruning sub-derivations with low probabilities from the
PCFG-reduction derivation space in a bottom-up manner. Two different sub-derivations which have
the same root node and span the same portion of the input string are used in building derivations of
the entire input string in exactly the same way. This means that parses containing the more proba-
ble of these sub-derivations will always be more probable than those derivations containing the less
probable sub-derivation. Consequently, the less probable sub-derivation will never be used to build
the most probable derivation/parse and can be removed from the derivation space.

To this Viterbi derivation space we then apply the method of Jiménez and Marzal [2000] in order
to determine the n-best derivations for the input string, where we set n to 2,000. We sum over the
probabilities of the parses yielded by the n-best derivations, and return the one with the highest
probability.

6 Evaluation
We evaluate our parser output using the standard precision, recall and f-score metrics as given in
(9), (10) and (11).

Precision =
correct constituents

parse constituents
(9)

Recall =
correct constituents

reference constituents
(10)

F − Score =
2 ∗ Precision ∗ Recall

P recision + Recall
(11)

We transform our parser output and reference trees in three different ways and then apply the
above metrics to each. The purpose of these transformations is to facilitate evaluation of unlabelled
parse accuracy, labelled parse accuracy and feature detection accuracy. The transformations are
illustrated in (12), where (12)(a) gives the parser output and (12)(b) – (d) the three transformations
applied to the parser output. In (12)(b) all labels have been replaced with the generic ‘.’ label.
The application of the evaluation metrics to these transformations gives unlabelled parse accuracy.
In (12)(c) all feature annotations have been stripped away, allowing evaluation of labelled parse
accuracy. Finally, in (12)(d) all labels with feature annotations are stripped of syntactic category
so that only those feature annotations remain, and all other constituents are deleted. This last
transformation allows us to evaluate feature annotation accuracy.

(a)Parser output (b)Unlabelled (c)Labelled (d)Features

S

NP-SUBJ VP

john V NP-OBJ

saw mary

.

. .

john . .

saw mary

S

NP VP

john V NP

saw mary

SUBJ

john OBJ

saw mary

(12)

The results of our experiments with the GF-DOP model are given in Tables 3, 4 and 5. The second
and third colums in each of these tables (marked unlabelled and labelled) give the results for parse
accuracy while the fourth column (features) gives the results for grammatical feature detection. The
rightmost column in each (marked occ) gives the number of occurrences of feature annotations in
the reference representations. Essentially, this column tells us how many feature annotations we
were looking to identify3 across the 8 test sets (720 test sentences in total) for each annotation run.
In each of the tables, the first line of results corresponds to the baseline, i.e. the results for the run
with no grammatical feature annotations on the treebank. The baseline scores in each of the tables
are identical, and are repeated for convenience only. Coverage for all runs including the baseline
was 93.89%.4

6.1 Functional annotation
The results of our experiments with functional annotation are given in Table 3. Focusing firstly
on single-function annotations, we observe that the unlabelled f-score is higher for every annotated
treebank than it is for the baseline. OBJ and ADJUNCT give the highest improvements over the
baseline (of 0.2279% and 0.1749% respectively). We observe similar trends for labelled f-score in
that OBJ and ADJUNCT again give the highest improvements over the baseline (of 0.4219% and
0.3347% respectively). A single annotation type, SUBJ, yields a decrease in labelled f-score over the
baseline (of -0.0321%); all others yield an increase. The f-scores for grammatical feature detection
range from 64.2857% (OBL) up to 100% (OBL-COMP, TOPIC-INT). If we focus on those features with
reference set occurrences of at least 100 (ADJUNCT, OBJ, SUBJ, COMPOUND, XCOMP) this range
of accuracy narrows to 68.7783% – 87.4267%, with highest accuracy for ADJUNCT and lowest for
XCOMP. In fact, we score significantly worse for XCOMP than for the next lowest performing feature,
which is SUBJ at 80.9938%.

Multi-function annotation results are given in the last three lines of Table 3. Annotation type ALL
refers to the treebank annotated with all 16 of the functions listed as single annotations. Annotation
type TOP5 refers to the treebank annotated with the 5 most frequently occurring functions which, as
above, are ADJUNCT, OBJ, SUBJ, COMPOUND and XCOMP. Finally, annotation type SUBJ OBJ refers
to the treebank annotated with those two functions only. We observe firstly that the unlabelled f-
scores for these annotated treebanks are not only higher than the baseline (by 0.2573% for ALL, by
0.2967% for TOP5 and by 0.2135% for SUBJ OBJ) but also higher than all single annotations with
the exception of OBJ, which outperforms SUBJ OBJ by 0.0144%. The same observations hold for
labelled f-score, where ALL improves over the baseline by 0.6454%, TOP5 by 0.6080% and SUBJ OBJ
by 0.4077%. Furthermore, we note that this improvement in tree structure accuracy does not cause
feature detection accuracy to suffer: the f-scores for grammatical feature detection hold up well,
ranging between 84.4528% and 85.1899%.

6.2 Annotation with lexical features
The results of our experiments with lexical feature annotation are given in Table 4. We observe
that all but one of the annotations (SPEC-FORM, decrease of -0.0122%) give an improvement over
the baseline in terms of unlabelled f-score. The greatest improvement is gained by annotating with

3An occurrence count of 0 for an annotation type means that the feature annotation occurred in the training data but
never in the test/reference data. Grammatical feature detection scores are nevertheless given as they reflect the presence or
absence of false positives.

4Those sentences which could not be fully parsed were assigned the most probable sequence of partial parses linked
together by a ‘TOP’ node.

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #

BASELINE 96.0619 96.3603 96.2109 92.6076 92.8953 92.7512 — — — —
ADJUNCT 96.2365 96.5447 96.3903 92.9373 93.2350 93.0859 87.8173 82.9736 85.3268 834
APP 96.1010 96.4088 96.2547 92.7148 93.0117 92.8630 100.000 100.000 100.000 0
COMP 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 77.2727 77.2727 77.2727 22
COMP-EX 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.000 100.000 100.000 0
COMPOUND 96.0913 96.3991 96.2450 92.6471 92.9438 92.7952 87.2852 81.6720 84.3854 311
OBJ 96.2848 96.5932 96.4388 93.0244 93.3223 93.1731 88.4058 86.4691 87.4267 776
OBJ2 96.0910 96.3894 96.2399 92.7141 93.0020 92.8578 100.000 100.000 100.000 0
OBL 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 75.0000 56.2500 64.2857 16
OBL-AGT 96.0913 96.3991 96.2450 92.7051 93.0020 92.8533 100.000 100.000 100.000 0
OBL-COMP 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.000 100.000 100.000 3
PRON-INT 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.000 91.6667 95.6522 24
PRON-REL 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.000 75.0000 85.7143 4
SUBJ 96.0542 96.3991 96.2263 92.5532 92.8856 92.7191 85.1175 77.2512 80.9938 422
TOPIC-INT 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.000 100.000 100.000 25
TOPIC-REL 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.000 66.6667 80.0000 3
XCOMP 96.1014 96.4185 96.2597 92.6478 92.9535 92.8004 77.5510 61.7886 68.7783 123
ALL 96.3049 96.6320 96.4682 93.2385 93.5553 93.3966 87.5106 81.6351 84.4708 2532
TOP5 96.3257 96.6903 96.5076 93.1831 93.5359 93.3592 87.2460 81.8329 84.4528 2466
SUBJ OBJ 96.2658 96.5835 96.4244 93.0057 93.3126 93.1589 87.1616 83.3055 85.1899 1198

Table 3: Evaluation of the DOP model with training data annotated with grammatical functions.

PCASE, where the increase is 0.2196%. When we look at the labelled f-scores we see that annotating
with SPEC-FORM again leads to a tiny decrease in accuracy, this time of -0.0099%. In contrast, the
greatest improvement is gained by annotating with COMP-FORM, where the increase is 0.2817%.
The f-scores for grammatical feature detection range from 51.2821% to 100%. If we focus on those
features with reference set occurrences of at least 100 (SPEC-FORM, PCASE, COMP-FORM, CONJ-
FORM, PRON-FORM) this range of accuracy narrows to 70.4782% – 92.1833%, with highest accuracy
for PRON-FORM and lowest for PCASE.

6.3 Annotation with atomic features
The results of our experiments with atomic feature annotation are given in Table 5. Of the 36 dif-
ferent atomic grammatical features we generated treebanks for, 27 give an increase in unlabelled
f-score over the baseline and 9 a decrease. Those which give the greatest increases are ADJUNCT-
TYPE (0.2082%), PERF (0.1690%), VTYPE (0.1593%), ANIM (0.1497%) and PASSIVE (0.1400%). Those
which give the greatest decreases are STMT-TYPE (-0.0667%), PSEM (-0.0520%) and NUM (-0.0517%).
When we focus on labelled f-score, we note that 33 of the features give an increase in accuracy
and only 3 give a decrease. Those which give decreases are GRAIN (-0.2318%), NUM (-0.1469%)
and PROPER (-0.0782%). The greatest increases in labelled f-score are gained by annotating with
PASSIVE (0.5369%), VTYPE (0.4206%) and PERF (0.4109%). The f-scores for grammatical feature
detection range from 0% to 100%. If we narrow our focus to those features with reference set occur-
rences of at least 100, this range of accuracy narrows to 81.0526% – 95.1879% with highest accuracy
for PERS and lowest for ADJUNCT-TYPE.

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #

BASELINE 96.0619 96.3603 96.2109 92.6076 92.8953 92.7512 — — — —
COMP-FORM 96.1401 96.4573 96.2984 92.8799 93.1865 93.0329 82.4468 63.5246 71.7593 244
CONJ-FORM 96.0910 96.3894 96.2399 92.6560 92.9438 92.7997 94.7368 75.0000 83.7209 240
CONJ-FORM-COMP 96.1010 96.4088 96.2547 92.7148 93.0117 92.8630 0.0000 0.0000 0.0000 6
PCASE 96.2394 96.6223 96.4305 92.7978 93.1670 92.9820 72.9032 68.2093 70.4782 497
PRECONJ-FORM 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.000 100.000 100.000 0
PREDET-FORM 96.1107 96.4185 96.2644 92.6858 92.9826 92.8340 100.000 50.0000 66.6667 12
PRON-FORM 96.1494 96.4573 96.3031 92.7632 93.0603 92.9115 96.6102 88.1443 92.1833 194
PRT-FORM 96.1021 96.4379 96.2697 92.7749 93.0991 92.9367 83.3333 37.0370 51.2821 27
SPEC-FORM 95.9896 96.4088 96.1987 92.5396 92.9438 92.7413 95.1774 86.5178 90.6412 1209

Table 4: Evaluation of the DOP model with training data annotated with lexical features.

6.4 Discussion
Looking first to general parse accuracy, we note that the best overall unlabelled f-scores are achieved
using the TOP5 (96.5076%) and ALL (96.4682%) annotation types. Furthermore, best overall labelled
f-scores are also achieved using the ALL (93.3966%) and TOP5 (93.3592%) annotation types. We con-
clude from this that annotating with multiple grammatical functions gives the greatest improvement
in phrase-structure tree parse accuracy. In addition, we conclude that the GF-DOP model generally
helps phrase-structure tree parse accuracy rather than hindering it. This conclusion is based on the
following: of the 64 annotated runs we carried out, 84.37% gave improvements over the baseline
in terms of unlabelled f-score and 93.75% gave improvements over the baseline in terms of labelled
f-score.

We do reasonably well at detecting grammatical functions, particularly the 5 most frequent
ones, where f-scores are in the range 68.7783% – 87.4267%. When we annotated with all 5 most
frequently-occurring functions, grammatical function accuracy remained high at 84.4528%. We also
do reasonably well at detecting the most frequent lexical features, where f-scores are in the range
70.4782% – 92.1833%. However, it is questionable as to whether it is really useful to be able to de-
tect such features – they are useful for helping us get better phrase-structure tree accuracy, but do
not add much additional information to the output parse. Finally, we do well at detecting the more
frequent atomic features, achieving f-scores in the range 81.0526% – 95.1879%.

7 Conclusions and Future Work
This paper proposed a new model – GF-DOP – which combines the robustness of the DOP model
with some of the linguistic competence of LFG-DOP. This model incorporates more detailed linguis-
tic information than Tree-DOP and, consequently, improves on the Tree-DOP model in that the
output parses are more informative and the probability model is sensitive to this additional infor-
mation. Although GF-DOP incorporates only some of the linguistic competence of the LFG-DOP
model, it nevertheless constitues an improvement over LFG-DOP from both theoretical and prac-
tical perspectives: it maintains the integrity of the probability model because there is no ‘leaked’
probability mass and is more computationally tractable because the increase in grammar size in-
duced by backing-off is not exponential.

We hypothesised that the GF-DOP model would (i) give us better phrase-structure tree parse ac-

unlabelled labelled features occ
precision recall fscore precision recall fscore precision recall fscore #

BASELINE 96.0619 96.3603 96.2109 92.6076 92.8953 92.7512 — — — —
ABBREV 96.1300 96.4379 96.2837 92.7148 93.0117 92.8630 100.000 100.000 100.000 30

ACONSTR 96.0817 96.3894 96.2353 92.7148 93.0117 92.8630 100.000 100.000 100.000 0
ADEG-DIM 96.0720 96.3797 96.2256 92.7051 93.0020 92.8533 100.000 64.7059 78.5714 17
ADEGREE 96.1591 96.4670 96.3128 92.8019 93.0991 92.9502 87.9859 88.9286 88.4547 280

ADJUNCT-TYPE 96.2744 96.5641 96.4191 92.8876 93.1670 93.0271 87.5000 75.4902 81.0526 612
ADV-TYPE 96.1107 96.4185 96.2644 92.8212 93.1185 92.9696 85.5691 77.2477 81.1958 545

ANIM 96.2253 96.4962 96.3606 92.7023 92.9632 92.8326 92.7273 83.0018 87.5954 553
ATYPE 96.1304 96.4476 96.2888 92.8122 93.1185 92.9651 87.0370 87.3606 87.1985 269
CASE 95.9965 96.3506 96.1732 92.5829 92.9244 92.7533 89.5514 87.3345 88.4290 1737

DEIXIS 96.0430 96.3506 96.1965 92.6954 92.9923 92.8436 100.000 25.0000 40.0000 16
EMPH 96.0720 96.3797 96.2256 92.7148 93.0117 92.8630 100.000 100.000 100.000 0

EMPHASIS 96.0720 96.3797 96.2256 92.7148 93.0117 92.8630 100.000 100.000 100.000 0
GEND 96.1777 96.4670 96.3221 92.8005 93.0797 92.9399 100.000 73.5294 84.7458 34

GERUND 96.0433 96.3603 96.2016 92.8219 93.1282 92.9748 89.2857 92.5926 90.9091 108
GRAIN 96.0240 96.3409 96.1822 92.3672 92.6720 92.5194 92.3945 91.2306 91.8089 2064

LAYOUT-TYPE 95.9981 96.3894 96.1933 92.6728 93.0506 92.8613 91.3136 81.5516 86.1569 1057
MOOD 96.1505 96.4865 96.3182 92.7459 93.0700 92.9077 90.7631 85.3904 87.9948 794
NUM 95.9687 96.3506 96.1592 92.4207 92.7885 92.6043 94.3262 92.5641 93.4369 2730

NUMBER-TYPE 96.0720 96.3797 96.2256 92.7148 93.0117 92.8630 100.000 95.9596 97.9381 99
PASSIVE 96.2156 96.4865 96.3509 93.1572 93.4194 93.2881 94.8529 91.6519 93.2249 1126

PERF 96.2447 96.5156 96.3799 93.0314 93.2932 93.1621 96.1015 92.6573 94.3480 1144
PERS 96.0460 96.4282 96.2367 92.8171 93.1865 93.0014 95.9372 94.4538 95.1897 2975
POL 96.1297 96.4282 96.2787 92.6851 92.9729 92.8288 0.0000 0.0000 0.0000 6

PREDET-TYPE 96.1107 96.4185 96.2644 92.6858 92.9826 92.8340 100.000 100.000 100.000 12
PROG 96.0928 96.4379 96.2651 92.8820 93.2156 93.0485 96.2557 90.3171 93.1919 1167

PRON-TYPE 96.1788 96.4962 96.3372 92.9186 93.2253 93.0717 94.9664 90.2232 92.5341 941
PROPER 96.0902 96.3700 96.2299 92.5385 92.8079 92.6730 100.000 73.5294 84.7458 34

PSEM 95.9776 96.3409 96.1589 92.6030 92.9535 92.7779 93.2886 88.2540 90.7015 315
PTYPE 96.0913 96.3991 96.2450 92.7245 93.0215 92.8727 92.3810 92.6752 92.5278 314

SPEC-TYPE 96.0746 96.4476 96.2608 92.6327 92.9923 92.8122 94.6950 87.5000 90.9554 1632
STMT-TYPE 95.9675 96.3215 96.1442 92.5926 92.9341 92.7630 92.1453 87.1406 89.5731 1252
TEMPORAL 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 0.0000 0.0000 0.0000 2

TENSE 96.0925 96.4282 96.2601 92.8233 93.1476 92.9852 87.0968 76.5464 81.4815 388
TIME 96.1107 96.4185 96.2644 92.7148 93.0117 92.8630 0.0000 0.0000 0.0000 2
TYPE 96.0433 96.3603 96.2016 92.8219 93.1282 92.9748 89.2857 92.5926 90.9091 108

VTYPE 96.2350 96.5059 96.3702 93.0410 93.3029 93.1718 93.5426 89.6819 91.5716 1163

Table 5: Evaluation of the DOP model with training data annotated with atomic grammatical fea-
tures.

curacy than the Tree-DOP model and (ii) allow us to learn grammatical features with a high degree
of accuracy. In a number of experiments on the HomeCentre corpus, we investigated the veracity
of this hypothesis. We generated a number of versions of this treebank with varying grammatical
feature annotations, and trained and tested our model on these treebanks. We evaluated the output
parses in terms of unlabelled parse accuracy, labelled parse accuracy and feature detection accuracy.

Our experiments show that annotating with multiple grammatical functions gives the greatest
improvement in phrase-structure tree parse accuracy and that, overall, the GF-DOP model generally
improves phrase-structure tree parse accuracy: 93.75% of the runs conducted gave improvements
over the baseline in terms of labelled f-score. Our experiments also show that performance in terms
of detecting grammatical features where feature occurrence is greater than 100 ranges between
68.7783% and 95.1879%, depending on the feature or group of features being tested and how often
those features were seen in the training data.

In future work, we would like to incorporate available subcategorisation information into the
model, perhaps by distinguishing between those functions which are subcategorised for and those
which are not. We would like to scale also to larger corpora, in particular to be able to investigate
features which were too infrequent in the data used here to be able to draw strong conclusions about
their usefulness in this context. We intend to achieve this using the resources of Cahill et al. [2004].
Finally, we would like to investigate further the characteristics of the model’s back-off element.

Acknowledgements
This work was generously supported by the Irish Research Council for Science and Technology (IRC-
SET) and Science Foundation Ireland (SFI).

References
Steven Abney. Stochastic Attribute-Value Grammars. Computational Linguistics, 23(4):597–618,

1997.

Rens Bod. An Improved Parser for Data-Oriented Lexical-Functional Analysis. In Proceedings of
the 38th Conference of the Association for Computational Linguistics, pages 61–68, Hong Kong,
2000a.

Rens Bod. An Empirical Evaluation of LFG-DOP. In Proceedings of the 19th International Confer-
ence on Computational Linguistics, pages 62–68, Saarbrucken, Germany, 2000b.

Rens Bod. Enriching Linguistics with Statistics: Performance Models of Natural Language. PhD the-
sis, Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands,
1995.

Rens Bod and Ronald Kaplan. A DOP model for Lexical-Functional Grammar. In Rens Bod, Remko
Scha, and Khalil Sima’an, editors, Data-Oriented Parsing, pages 211–232. Stanford CA.: CSLI
Publications, 2003.

Rens Bod and Ronald Kaplan. A Probabilistic Corpus-Driven Model for Lexical-Functional Analy-
sis. In Proceedings of the 17th International Conference on Computational Linguistics and 36th
Conference of the Association for Computational Linguistics, pages 145–151, Montreal, Canada,
1998.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef van Genabith, and Andy Way. Long-Distance
Dependency Resolution in Automatically Acquired Wide-Coverage PCFG-Based LFG Approxima-
tions. In Proceedings of the 42th Conference of the Association for Computational Linguistics,
pages 320–327, Barcelona, Spain, 2004.

Joshua Goodman. Efficient Parsing of DOP with PCFG-Reductions. In Rens Bod, Remko Scha, and
Khalil Sima’an, editors, Data-Oriented Parsing, pages 125–146. Stanford CA.: CSLI Publications,
2003.

Joshua Goodman. Efficient Algorithms for Parsing the DOP model. In Proceedings of the 1st Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP 1), pages 143–152, Philadel-
phia, PA., 1996.

Joshua Goodman. Parsing inside-out. PhD thesis, Harvard University, MA., 1998.

Vı́ctor M. Jiménez and Andrés Marzal. Computation of the N Best Parse Trees for Weighted and
Stochastic Context-Free Grammars. In Proceedings of the Joint IAPR International Workshops on
Advances in Pattern Recognition, pages 183–192, London, UK, 2000. Springer-Verlag.

Khalil Sima’an. An optimized algorithm for Data Oriented Parsing. In Proceedings of International
Conference on Recent Advances in Natural Language Processing, Tzigov Chark, Bulgaria, 1995.

Khalil Sima’an. Learning Efficient Disambiguation. PhD thesis, University of Amsterdam, The
Netherlands, 1999.

Andy Way. A Hybrid Architecture for Robust MT using LFG-DOP. Journal of Experimental and
Theoretical Artificial Intelligence, 11:441–471, 1999.

Andreas Zollmann and Khalil Sima’an. A Consistent and Efficient Estimator for Data-Oriented
Parsing. Journal of Automata, Languages and Combinatorics (JALC), 10(2/3):367–388, 2005.

