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Abstract

This paper presents a method to automatically acquire widerage, ro-
bust, probabilistic Lexical-Functional Grammar resosrfig Chinese from
the Penn Chinese Treebank (CTB). Our starting point is thigeggproof-
of-concept work of (Burke et al., 2004) on automatic f-stane annotation,
LFG grammar acquisition and parsing for Chinese using thB Grsion 2
(CTB2). We substantially extend and improve on this earksearch as re-
gards coverage, robustness, quality and fine-grainedhtfssm@sulting LFG
resources. We achieve this through (i) improved LFG analjmea number
of core Chinese phenomena,; (ii) a new automatic f-strucaretation ar-
chitecture which involves an intermediate dependencyesamtation; (iii)
scaling the approach from 4.1K trees in CTB2 to 18.8K tre€3TiB version
5.1 (CTB5.1) and (iv) developing a novel treebank-basedagah to recov-
ering non-local dependencies (NLDs) for Chinese parsgruiutAgainst a
new 200-sentence good standard of manually constructeddtsres, the
method achieves 96.00% f-score for f-structures autoltigenerated for
the original CTB trees and 80.01% for NLD-recovered f-stinoes generated
for the trees output by Bikel's parser.

1 Introduction

Automatically inducing deep, wide-coverage, constra@ted grammars from ex-
isting treebanks avoids much of time and cost involved inuadiy creating such
resources. A number of papers (van Genabith et al., 1999eiSedal., 2000;
Frank, 2000; Cahill et al., 2002) have developed methodadtsmatically anno-
tating treebank (phrase structure or c-structure) tre#ts WrG f-structure infor-
mation to build f-structure corpora to acquire LFG gramnesources.

In LFG, c-structure and f-structure are independent lewélsepresentation
which are related in terms of a correspondence functioneptigin ¢ (Kaplan,
1995). In the conventional interpretation, thecorrespondence between c- and
f-structure is defined implicitly in terms of functional astations on c-structure
nodes, from which an f-structure can be computed by a conssalver.

In one type of treebank-based LFG grammar acquisition aohes, referred
to as “annotation-based grammar acquisition”, functi@tilemata are annotated
either manually on the entire CFG rules automatically eté@ from the tree-
bank (van Genabith et al., 1999); or on a smaller number oflftaafted regular
expression-based templates representing partial andspaéfied CFG rules (Sadler
et al., 2000) which are applied to automatically annotaéeGRG rules extracted
from treebank trees; or, using an annotation algorithrmensing treebank trees, ap-
plying annotations to each node of a local c-structure sefitr a left/right context
partitioned by the head node (Cahill et al., 2002).

An alternative grammar acquisition architecture for LF&erred to as “conversion-
based grammar acquisition”, directly induces an f-stmgcftom a c-structure tree,
without intermediate functional schemata annotations-etructure trees. An al-
gorithm building on this architecture was developed in (kre2000) by directly



rewriting partial c-structure fragments into correspogdpartial f-structures, using
a rewriting system originally developed for transfer-whdéachine Translation.
As opposed to the CFG rule- and annotation-based archigectwhich annota-
tion principles are by and large restricted to local treedeagith one, this approach
naturally generalises to non-local trees.

One of the challenges in both the annotation- and more dimeatersion-based
architectures is to keep the number of f-structure anrtatonversion rules which
encode linguistic principles to a minimum, as their craativolves manual effort.
Another challenge is to find automatic f-structure annotdtonversion architec-
tures that generalise to different languages and treebacudengs.

A common characteristic of the work cited above is that al thethods are
applied to English treebanks (Penn-Il, Susanne and APdrg@lrom which LFG
resources are acquired for English. An initial attempt teed the treebank- and
annotation-based LFG acquisition methodology to Chinega Was carried out
by (Burke et al., 2004), which applied a version of (Cahillag¢t 2004)’'s algo-
rithm adapted to Chinese via the Penn Chinese Treebankrne&tgL.DC2001T11)
and was evaluated against a small set of 50 manually cotetrgold-standard
f-structures. The experiments were proof-of-concept amdesvhat limited with
respect to (i) the coverage of Chinese linguistic phenomg@inahe quality of the
f-structures produced; (iii) parser output producing opkpto’ f-structures with
non-local dependencies unresolved; (vi) the size of trebtaerk and gold standard.

In the present paper, we address these concerns and prasamtfatructure
annotation architecture and a new annotation algorithnCfonese, which:

e combines aspects of both the annotation-based and camvdrased archi-
tectures described above.

e generates proper f-structures rather than proto-f-strastby resolving NLDs
for parser output.

e scales up to the full Penn Chinese Treebank version 5.1 (I0DEP01U01),
whose size is more than 4 times of that of CTB2.

e is evaluated on a new extended set of Chinese gold-standndctures for
200 sentences.

2 Automatic F-Structure Annotation of CTB5.1

2.1 Chinese LFG

Research on LFG has provided analyses for a considerabléerunh linguistic

phenomena in Indo-European, Asian, African and Native Acaarand Australian
languages. However, to date, there has been no standard dde@ra for many
of the core phenomena of Chinese, a language drasticaleretit from English,
German, French and other Indo-European languages, wheabften the focus of

Developed jointly with PARC.



attention. Chinese has very distinctive linguistic prajesrt including: (i) very lit-
tle inflectional morphology encoding tense, number, gemder, resulting in the
almost complete absence of agreement phenomena famdiar Eruropean lan-
guages; (ii) lack of case markers, complementisers etdchwdften causes syn-
tactic and semantic ambiguity; (iii) the tendency towardgssion of constituents
on condition that they can be inferred from the context, Whicludes not only
subject and object arguments, but also predicates and lotagls of phrases, in
some cases.

Though the main purpose of this paper is to address the wadliasue of au-
tomatically inducing f-structures from the Penn Chineseltank, an LFG account
for various phenomena and constructions in Chinese is aquigite. To give a
flavour of what the Chinese LFG likes look, we illustrate thgtructure trees rep-
resented in the CTB and our analyses with the correspondstgquétures for a
number of core linguistic phenomena characteristic of Esgrbelow.

Classifiers are common in Chinese (and some other Asian languages) tin tha
they cooccur with numerals or demonstrative pronouns tacthings or persons
(nouns) or indicate the frequency of actions (verbs). Twipea unified interpre-
tation of classifiers, we treat a classifier as a grammatigaition modifying the
head noun (or verb) rather than e.g. as a feature attachbd tieterminer or head
noun/verb, for the following reasons:

e classifiers have content meaning: standard classifiers asié/meter”,
“/% Jylkilogram”, “Jffi/bottle” relate to distance, weight, volume, etc. and
individual classifiers indicate prominent features of tlo&im they modify,
for example 42/BA’ which is derived from “handle” is used as a classifier
for objects with a handle, as in (1).

@ — &8 BT
one CLS chair
‘one chair’

e classifiers can function as the head within a phrase, as.in (2)
2 41 = F
hit three CLS
‘hit three times’

o classifiers can be modified by adjectives, as in (3).

(3) — K i 3
one big bowl/CLS rice
‘a big bowl of rice’

Figure 1 illustrates the CTB representation of a classifieithe corresponding
schematic f-structure. A noticeable difference is thatdberminer (DT) takes a
qguantifier phrase (QP) as its complement in the CTB consiiiftiee, whereas in
our f-structure the determiner and quantifier are parallietfions both specifying
the head noun predicate.



4 x H A ¥FE
these five CLS student
‘these five students’

NP

/\ PRED  ‘ZE4

DP NP DET {PRED Ié}
/\ |
DT QP NN PRED A
| | QUANT .
ix CD CLP NUMBER [PRED ﬂ]
the | | student

fi A

five CLS

Figure 1: The CTB tree and our f-structure analysis of cle&ssi

DE Phrases are formed by the function word?j/DE” attached to various cat-
egories, such as possessive phrases, noun phrases,vadjutises or relative
clauses. DE has no content other than marking the precedliras® as a modi-
fier of NP. Different from the original f-structure annotatialgorithm and the 50-
sentence gold-standard f-structures developed in (Burla,e2004), we choose
the content word rather than DE as head of the modifier, becalighe other
words in the modifier phrase will depend on the head, and merddE has no
content thus may be omitted in examples such as (5a). Therefoour analysis
we treat DE as an optional feature attached to the modifiexem@ified in Fig-
ure 2. What is noticeable here is that the grammatical fanabf the DE-phrase
in (5b) is an attributive modifierA(pJuNcT) while in (6) it is a possessoP(©s9,
even though the constituent structures are the same foy tha¢hto the absence of
any case marking. The difference is in fact lexical and dubedcead word of the
adjunct which is a common noun (NN) in (5), and the head worth@fpossessor
which is a proper noun (NR) in (6).

BEI-Constructions are commonly considered approximately equivalent to pas-
sive voice in English. However we do not trea/BEI” as just a passive voice
feature, in that it also introduces the logic subject in kiBtgl constructions as in
(7), similar to the preposition “by” in the English passivenstruction. Further-
more, we do not analyse it as a subject marker, as short-Bidtieations as in
(8) will be subjectless, where BEI marks nothing. And rattiem treating it as
a preposition, though the analysis can be argued from adthealr point of view,
it does not always indicate passive voice, as in (9), wheseethbedded verb is
intransitive. In line with (Her, 1991), we treat BEI as a veithe advantage of
this analysis is that it provides a unified account for emeedeerbs, where verbs
in BEI sentences have the same subcategorisation framé®ses in their BEI-
less corresponding sentences. (Her, 1991) treats BEI agotalptonstruction,
where BEI requires an object and an non-finite VP complemeldwever, this



(5) a. Kk Mt miH
large scale project

NP

PN

NP NP

PN |
ADJP NP NN

| | |

JJ NN g

| | . project

KR

large scale

b. K KL HiH
large scale DE project
‘a large-scale project’

NP

DNP NP

/\ |
NP DEG NN
ADJP NP g JiH

| | DE project
JJ NN

| |
KN
large scale

(6) k= 45
ZhangSan DE book
‘ZhangSan'’s book’

NP

PR

DNP NP

PN
NP  DEG NN

| | |
NR 11

| DE book
k=

ZhangSan

[PrRED JRE
PRED R
ADJUNCT ADJUNCT {[PRED
DE -
PRED ‘IH
PRED A
ADJUNCT ADJUNCT {[PRED :
DE +
PRED ‘T
poSS [PRED ‘GKE’]
DE  +

Figure 2: The CTB tree and our f-structure analysis of DEapar

is somewhat different from the CTB representation, wheré tBkes a sentential
complement. Both constructions are acceptable in Chindég®ut the presence
of a complementiser. For practical purposes, we acceptdeerépresentation in
CTB and hence BEI requires a closed complemeriMP) in our f-structure, as

exemplified in Figure 3.



(7) X246 il #e 3k 2k
these data BEI| ignore
‘These data was ignored by me.’

P

oP NP LB/\IP

D:T N:N E?Sél NP/\VP
e o |

:ﬁesé%%jg PN W NP

|
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(8) fib # #xT —EHR
he BEI award the top prize
‘He was awarded the top prize.

IP
NP VP
|
PN
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e
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gy NONE™ NN
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comp |
OBL_TH [PRED : %é@}

Figure 3: The CTB tree and our f-structure analysis of BEistauction

9) % #e W T
cat BEI mouse escape ASP
‘The cat let the mouse escape.

2.2 A New F-Structure Annotation Algorithm for CTB

The f-structure annotation method developed in (Cahilll.¢2802; Burke et al.,

2004) builds on CFG rule- and annotation-based architecty and large the al-
gorithm works on local treebank subtrees of depth one (etpriv to a CFG rulé)

In order to annotate the nodes in the tree, the algorithmtipat each sequence
of daughters in the local subtree into three sections: laftext, head and right

2Though it also uses some non-local information.




context. Configurational information (left or right positi regarding to the head),
category of mother and daughter nodes and Penn treebankohalclabels (if
they exist) on daughter nodes are exploited to annotatesneitlle f-structure func-
tional equations. The annotation principles for ChinesgBimrke et al., 2004) are
fairly coarse-grained. However configurational and catedjanformation from
local trees of depth one only is not always sufficient to deiee the appropriate
grammatical function (GF), as for example for DE-phraséguife 2). This means
disambiguation of GFs for Chinese may require access tedkixiformation (com-
mon or proper noun in Figure 2) and more extensive contekit@mmation beyond
the local configurational and categorial structure.

In (Canhill et al., 2002; Burke et al., 2004), for each tree #structure equa-
tions are collected after annotation and passed on to aragristolver which pro-
duces an f-structure for the tree. Unfortunately, as empthin (Cahill et al., 2002),
the constraint solver’s capability is limited: it can hamelquality constraints, dis-
junction and simple set-valued feature constraints. Hewet/(i) fails to generate
an f-structure (either complete or partial) in case of aadbetween the automati-
cally annotated features; and (ii) does not provide subsiomgonstraints to dis-
tribute distributive features into coordinate f-struetsir

In order to avoid the limitations of the constraint solvangdan order to ex-
ploit more information for function annotation from a largentext rather than
within the local tree, instead of indirectly generating thetructure via functional
equations annotated to c-structure trees, we adopt thmatitee approach which
transduces the treebank tree into f-structure via an irgdiate dependency struc-
ture, directly constructed from the original c-structueet as shown in Figures 4
and 5.

The basic idea is that the=| (or the equivalenty(n;)=¢(n;) equations in
Figure 4) head projections in the classical LFG projectiainigecture allow us to
collapse a c-structure tree into an intermediate, unlabelependency structure as
in Figure 5. The intermediate unlabelled dependency sireadés somewhat more
abstract and normalised (compared to the original c-stradree) and is used as
input to an f-structure annotation algorithm, which is siengand more general
than the conventional f-structure algorithms (Cahill et2002; Burke et al., 2004)
directly operating on the original, more complex and vadestructure trees.

The new f-structure annotation architecture is illustlate Figure 5, and in-
cludes two major steps:

I. We first extract all predicates from the (local) c-struettree, using head-
finding rules similar to that used in (Collins, 1999), addpte Chinese
data and CTB5.1. Collapsing head-branches along the hegetfion lines,
the c-structure configuration is projected to an intermedimlabelled de-
pendency structure, augmented with CFG category and onflenmation
inherited from the c-structure.

Il. Second, we use high-level annotation principles exjpigiconfigurational,
categorial, functional as well as lexical information frahe intermediate



unlabelled dependency structure to annotate grammatioatibn and other
f-structure information (to create a labelled dependennyctire, i.e. an

LFG f-structure).

PRED ‘i’

‘ﬁ)@’

SUBJ
J2 ADJUNCT {fg[PRED %3%}}

NN:n4 NN:n5 VA:n6
%W
economygrowth rapi

f-structure
(f1 PRED="IRI#E’ ( f1 SUBI)=f2
(f2 PRED)="& i’ (f2 ADJUNCT)=f3
(f3 PRED="&%¢

PRED

¢-correspondence:
$(n1)=p(n3)=p(n6)=f1
#(n2)=p(n5)=f2
P(nd)=f3

Figure 4:¢-projection from c-structure to f-structure

Pe-__
NP-TMP<.. NP-TPC<«  NP-SBJ«. VP«
| \‘, | /
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i HE S o 43 kg RE
past five years GuangXi economygrowth  rapid
IP:VA: il J#E - _
PRED R
PRED CHAE
NT:Fi4E PNy ‘NN:& ADJUNCT
NP N?’£¢ NP:PN775 NP NT”;ZH:% ADJUNCT {[PRED Jiz':}}
NT:d 2= NN:Z 5%
TOPIC [PRED ‘F”W’}
PRED SR
SUBJ
ADJUNCT {[PRED ‘%‘%’}}

() Predicate Extraction

(1) Function Annotation

Figure 5: The new f-structure annotation architecture foBC

By abstracting away from the ‘redundant’ c-structure nadesir intermediate
dependency representations, the annotation principlesgaly to non-local sub-
trees. This allow us to disambiguate different GFs in a lacgatext and resort to



lexical information. As a more abstract dependency-likacttire is used to me-
diate between the c- & f-structure, the algorithm alwaysegates an f-structure,
and there are no clashing functional equations causingahgti@int solver to fail.
Moreover, the intermediate dependency structure carydemildle distribution into
coordinate structures by moving and duplicating the depecyl branch associ-
ated with distributive functions. Furthermore, finite agppmations of functional
uncertainty equations resembling paths of non-local dégrecies also can be com-
puted on the intermediate dependency structure for theoparpf NLD recovery
(this will be presented in section 3). Finally, in order tofirm to the coherence
condition and to produce a single connected f-structurevery CTB tree, a post-
processing step is carried out to check duplications andtithcand add missing
annotations.

Our new annotation algorithm is somewhat similar in spwoitiie conversion
approach developed in (Frank, 2000), However in (FrankQ28@lgorithm the
mapping of c-structure to f-structure is carried out in otepausing a tree/graph
rewriting system. Our method enforces a clear separatitvndes the intermediate
unlabelled dependency structure (predicate identifioptimd function annotation.
Predicate identification maps c-structure into an unlaldetlependency represen-
tation, and is thus designed particularly for a specific tgp&reebank encoding
and data-structures. By contrast, function annotatiorcé®mplished on the de-
pendency representation which is much more compact andatised than the
original c-structure representation, hence the functiomogation rules are more
simple and the architecture minimises the dependency crihetation rules on
the particulars of the particular treebank encoding.

2.3 Experimental Evaluation

Similar to (Cahill et al., 2002; Burke et al., 2004), our nematation algorithm is
evaluated both quantitatively and qualitatively.

We apply the f-structure annotation algorithm to the whol®6.1 with 18,804
sentences. Unlike the CFG- and annotation-based predesé€ahill et al., 2002;
Burke et al., 2004), the new algorithm guarantees that 1008tedreebank trees
receive a single, connected f-structure.

For the purpose of qualitative evaluation, we selected 28@esces from CTB5.1
for which the f-structures are automatically produced byannotation algorithm,
and then manually corrected to construct a gold-standdreh §ae with our Chi-
nese LFG analyses represented in Section 2.1. Annotatialityqis measured in
terms of predicate-argument-adjunct (or dependencydisaka The relations are
represented as tripleslation(predicate, ar gument /adjunct), following (Crouch
et al., 2002). The f-structure annotation algorithm is eapto two different sets
of test data: (i) the original CTB trees, and (ii) trees otitpuBikel's parser (Bikel
and Chiang, 2000) trained on 80% of the CTB5.1 trees, exausithe 200 gold-
standard sentences. Table 1 reports the results againgwh200-sentence set of
gold-standard f-structures.



CTB Trees

Parser Output Trees

Precision Recall F-Score| Precision Recall F-Score
Preds Only| 93.68 94.93 94.30 73.55 65.05 69.04
All GFs 95.25 96.75 96.00 84.00 71.77 77.40

Table 1: Quality of f-structure annotation

Table 1 shows that given high-quality input trees, the neyer@thm produces
high quality f-structures with f-scores of around 94%-9686 freds-only and all
GFs, respectively. The corresponding scores drop by 20%-@4solute on parser
produced trees.

3 Recovery of Chinese Non-Local Dependencies for Parser
Output

The drastic drop in the results on parser output trees islyndime to labelled
bracketing parser errors, but also because Bikel's paaset host state-of-the-art
treebank-based broad-coverage probabilistic parsees dot capture non-local
dependencies (or ‘movement’ phenoménas a result, the automatically gener-
ated f-structures produced from parser output trees ate-psiructures, as they
only represent purely local dependencies. In this seciverpresent a post-processing
approach to recover NLDs on the automatically generatetbstructures.

3.1 NLDs in Chinese

Non-local dependencies in CTB are represented in terms pfyeoategories
(ECs) and (for some of them) coindexation with antecedastexemplified in Fig-
ure 6. Following previous work for English and the CTB antiotascheme (Xue
and Xia, 2000), we use the term “non-local dependencies” esvar term for
all missing or dislocated elements represented in the CT&nasmpty category
(with or without coindexation/antecedent), and our uséefterm remains agnos-
tic about fine-grained distinctions between non-local depecies drawn in the
theoretical linguistics literature.

Table 2 gives a breakdown of the most frequent types of enmaiggories and
their antecedents. According to their different lingustproperties, we classify
these empty nodes into three major types: null relative quos, locally mediated
dependencies, and long-distance dependencies (LDDs).

Null Relative Pronouns (Table 2, rows 2 and 7) themselves are local dependen-
cies, and thus are not coindexed with an antecedent. Butntiegljate non-local

3The original parser does not produce CTB functional tageeeibf which the f-structure annota-
tion algorithm takes advantage (if they are present). Tmreshe CTB functional tags, we retrained
the original parser to allow it to produce CTB functionalgas part its output.
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Figure 6: NLDs example of sentenc@éople) don't want to look for and train
new writers who have potentialthe CTB tree and the corresponding f-structure.



| | Antecedent POS Label  Count] Description |

1 WHNP NP *T* 11670 | WH trace (e.g. *OP* [ E4PT* §) P £)

2 WHNP  *OP* 11621 | Empty relative pronouns (e.§0P* 1 [H & 5 it 1LA)
3 NP *PRO* 10946 | Control constructions (e.gX H AVF*PRO* li)

4 NP *pro* 7481 | Pro-drop situations (e.gpro* /& i ) f) ) 1)

5 IP P *T* 575 | Topicalisation (e.gF&AIfiEm, flLiit*T*)

6 WHPP PP *T* 337 | WH trace (e.g. *OPA LI¥T* B 4EHLX)

7 WHPP  *OP* 337 | Empty relative pronouns (e.§0P* A LI %4 H1[X)

8 NP NP N 291 | Raising & passive constructions (e EAT#EHERR* #£41)
9 NP NP *RNR* 258 | Coordinations (e.giil*RNR* FlIsZ K #t)

10 CLP CLP *RNR* 182 | Coordinations (e.gli*RNR* 4 +1/,70)

11 NP NP *T* 93 | Topicalisation (e.g#izK #§[*T* Jk=22K)

Table 2: The distribution of the most frequent types of engatiegories and their
antecedents in CTB5.1.

dependencies by functioning as antecedents for the dislbc@nstituent inside a
relative clausé.

Locally Mediated Dependencies are non-local in that they are projected through
a third lexical item (such as a control or raising verb) whirololves a dependency
between two adjacent levels and they are therefore bound@ibs type encom-
passes: (Table 2, row 8) raising constructions, and shetdnstructions (passivi-
sation); (row 3) control constructions, which includes ahiberent types: a generic
*PRO* with an arbitrary reading (approximately equal to ximessed subjects of
to-infinitive and gerund verbs in English); and a *PRO* with dé& reference
(subject or object controf.

Long-Distance Dependencies differ from locally mediated dependencies, in that
the path linking the antecedent and trace might be unbounde®s include the
following phenomena:

Wh-traces in relative clauses, where an argument (Table 2, row 1) auredj
(row 6) ‘moves’ and is coindexed with the ‘extraction’ site.

Topicalisation (Table 2, rows 5 and 11) is one of the typical LDDs in English,
whereas in Chinese not all topics involve displacementhag/s in example (10).

(10) dbxt R W& %
Beijing autumn most beautiful
‘Autumn is the most beautiful in Beijing.’

“Null relative pronouns in the CTB annotation are used tdristish relative clauses in which an
argument or adjunct of the embedded verb ‘moves’ to anothstipn from complement (appositive)
clauses which do not involve non-local dependencies.

SHowever in this case the CTB annotation does not coindexatussl (trace) with its controller
(antecedent) as the *PRO* in Figure 6.



Long-Bei construction  as described above, taking a sentential complement which
possibly involves long-distance dependencies, as in elea(tf).

(11) 4y #¢ g Ik A mr
John BEI Mary send somebody hit ASP
‘John was hit by somebody sent by Mary.’

Coordination is divided into two groups: right node raising of an NP phrase
which is an argument shared by the coordinate predicatdde(®a row 9); and
the coordination of quantifier phrases (row 10) and verbedgds as example (12),
in which the antecedent and trace are both predicates asiblyotake their own
arguments or adjuncts.

(12) 3 A1 A 5355 % Aw F *RNR* ERE
I and he respectively go to company and *RNR* hospital
‘I went to the company and he went to the hospital respegtivel

Pro-drop cases (Table 2, row 4) are prominent in Chinese because subject and
object functions are only semantically but not syntaclycatquired. Neverthe-
less, here we also treat pro-drop as a long-distance depends in principle the
dropped subjects can be determined from the general (aftensententiaf) con-

text.

3.2 NLD Recovery Algorithm for CTB

Among these NLD types, LDDs cover various linguistic phesam and are the
most difficult to resolve. Inspired by (Cabhill et al., 2004 recover long-distance
dependencies at the level of f-structures, using autoaibtiacquired subcategori-
sation frames and finite approximations of functional utaiety equations de-
scribing LDD paths from the f-structure annotated CTB. (Cadt al., 2004)’s
algorithm only resolves certain LDDs with known types ofedents (OPIC,
TOPIC_REL andrFocusg. However as illustrated above, except for relative clause
the antecedents in Chinese LDDs do not systematically spored to types of
grammatical function. Furthermore, more than half of alpgrcategories are not
coindexed with an antecedent due to the high prevalenceoefifmp in Chinese.
In order to resolve all Chinese LDDs represented in the CT&mwedify and sub-
stantially extend (Cahill et al., 2004)’s algorithm as dolk:

1. we extract LDD resolution paths linking reentrances in f-structures au-
tomatically generated for the original CTB trees. To be#stecount for all
Chinese LDDs represented in the CTB, we calculate the piilyabf p
conditioned on the GF associated with the tra¢@stead of the antecedent

®In this case, the ‘pro’ will be resolved by anaphora resohuth a later stage.



as in Cabhill et al. (2004)). The path probabiliB(p|t) is estimated as Eq. 1
and some examples of LDD paths are listed in Table 3.

count(p,t)

P(plt) = 1
(plt) ST count(pi. 1) €y
| Trace (Path) Prob. |

adjunct(up-adjunct:down-topiel) 0.9018
adjunct(up-adjunct:up-coord:down-topiel) 0.0192
adjunct(NULL) 0.0128
obj(up-obj:down-topiael) 0.7915
obj(up-obj:up-coord:down-coord:down-obj)  0.1108
Subj(NULL) 0.3903

subj(up-subj:down-topicel) 0.2092

Table 3: Examples of LDD paths

2. we extract the subcat framefor each verbal formw from the automatically
generated f-structures and calculate the probability cbnditioned ornw.
As Chinese has little inflectional morphology, we augmeastwiordw with
syntactic features including the POSwafthe GF ofw, so as to disambiguate
subcat frames and choose the appropriate one in particataexd. The
lexical subcat frame probability(s|w, w_feats) is estimated as Eq. 2 and
some examples of subcat frames are listed in Table 4.

count(s, w,w_feats)

v count(s;, w,w_feats)

P(s|lw,w_feats) = 2)

| Word:POS-GF(Subcat Frames)  Prob. |

5 :VE-adj_rel([subj, obj]) 0.6769
£ :VE-adj_rel([subj, comp]) 0.1531
£ :VE-adj_rel([subj]) 0.0556
f:VE-comp([subj, obj]) 0.4804
f:VE-comp([subj, comp]) 0.2587
4 :VE-top([subj, comp]) 0.4397
£ :VE-top([subj, obj]) 0.3510

Table 4: Examples of subcat frames



3. given the set of subcat frame$or the wordw, and the set of pathsfor the
tracet, the algorithm traverses the f-structufdo:

- predict a dislocated argumenat a sub-f-structuré by comparing the
local PRED:w t0 w's subcat frames

- t can be inserted &t if h together witht is complete and coherent
relative to subcat frame

- traversef inside-out starting front along the pathy

- link ¢ to it's antecedent if p’s ending GFa exists in a sub-f-structure
within f; or leavet without an antecedent if an empty path faxists

4. rank all resolution candidates according to the prodéisubcat frame and
LDD path probabilities (Eg. 3).

P(s|lw,w_feat) x H P(plt;) 3
j=1

As described in Section 3.1, besides LDDs, there are twa ¢fpes of NLDs
in the CTB5.1, and their different linguistic properties yr&quire more fine-
grained recovery strategies than the one described so farthdfmore, as the
LDD recovery method described above is triggered by disémtaubcategoris-
able grammatical functions, cases of LDDs in which the tiaggot an argument
in the f-structure, e.g. aRDJUNCT or TOPIC in relative clauses or a nuRED in
verbal coordination, can not be recovered by the algorittmorder to recover all
NLD types in the CTB5.1, we develop a hybrid methodology. Tiabrid method
involves four strategies (including the one described o fa

e Applying a few simple heuristic rules to insert the emp#ED for coordi-
nations and null relative pronouns for relative constutdi The former is
done by comparing the part-of-speech of the local predicaitel their argu-
ments in each coordinate; and the latter is triggered bAGR/NCT_REL in
our system.

e Inserting an empty node with G&uBJ for short-bei construction, control
and raising constructions, and relate it to the upper-lewsor oBJ ac-
cordingly.

e Exploiting (Cahill et al., 2004)'s algorithm, which condits the proba-
bility of LDD path on the GF associated of the antecedentarathan the
trace, to resolve the wh-trace in relativisation, inclgdimgovernable GFs
TOPIC andADJUNCT.

e Using our modified LDD resolution algorithm to resolve thmegning types.

3.3 Experimental Evaluation

For the experiments on NLD recovery, we use the first 760lastiof CTB5.1,
from which 75 double-annotated files (1,046 sentences) se&d as test data, 75



files (1,082 sentences) are held out as development datke tiveiother 610 files
(8,256 sentences) are used as training data. Experimentsaaied out on two
different kinds of input: first on CTB gold standard treespgted of all empty
nodes and coindexation information; and second, on theubdtees of Bikel's
parser.

We use the triple dependency relation encoding in the etratuanetric for
NLD recovery. In the trace insertion evaluation, the trazeepresented by the
empty category, e.gpBJ % #it/look for, NONE) in Figure 6; and in the antecedent
recovery evaluation, the trace is realised by the prediohtbe antecedent, e.g.
oBJ( /& ##/look for, 11: % lwriter).

Table 5 shows the performance of the NLD recovery algoritigairsst (i) the
CTB5.1 test set given the trees stripped of all empty nodescaimdexation in-
formation and (ii) output trees by Bikel's parser. Table @egi the results of f-
structure annotation for parser output after NLD resotutvaluated against the
200-sentence gold standard, which shows 2.3% and 2.6% vement of pred-
only measure and all-GFs measure respectively over the-pituctures (Ta-
ble 1).

CTB Trees Parser Output Trees
Precision Recall F-Score| Precision Recall F-Score

Insertion 92.86 91.45 92.15| 67.29 62.33 64.71
Recovery| 84.92 83.64 84.28| 56.88 52.69 54.71

Table 5: Evaluation of NLD trace insertion and antecedettvery

\ +NLD res. \ Precision Recall F—Score\

Preds Only| 71.91 70.81 71.36
All GFs 80.41 79.61 80.01

Table 6: Evaluation of proper f-structures from NLD-resm\parser output

4 Conclusions and Future Work

We have reported on a project on inducing wide-coverage Lpfeoximations for
Chinese from the CTB5.1. Our new two-stage annotation tactuire provides an
interface transducing c-structure trees to f-structufdse method avoids some of
the limitations of the CFG rule- and annotation-based nuetiidie more general
annotation principles operating on intermediate unl@etlependency representa-
tions allow us to scale the method to the whole Penn Chinesbadnk and guar-
antee that every constituent-tree in the CTB5.1 can ders@naplete f-structure.
The separation of function annotation from the determimatif the unlabelled de-
pendency representations, minimises the dependency @fitlcéonal annotation



principles on the particular treebank encoding and datetsires. Our f-structure
annotation algorithm is motivated by Chinese, however,aigd parts it is less
language-dependent than the CFG-rule- and annotatiedlbasthods of (Cahill
et al., 2002; Burke et al., 2004). As the method exploitsrimfation from a larger
context, including non-local trees and lexical informatid may also benefit less
configurational languages which exhibit relatively freerdvorder, with morphol-
ogy rather than phrasal position determining functiondso Finally, the non-
local dependency recovery method captures ‘moved’ colestis and produces a
full-fledged f-structure from parser output.

Areas of current and future research include further extegnithe gold-standard
and examining more kinds of constructions and linguistier@mena particular in
Chinese. We will also investigate ways of closing the gapvbenh the perfor-
mance of CTB trees and parer output trees, including impmppiarsing result for
Chinese.
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