
Syntax-Semantic Interface and Tree Adjoining
Grammar

Djamé Seddah

NCLT, DUBLIN

01/18/06

1 / 1

Objective: to build a predicate argument structure from a

TAG analysis

From a Tree Adjunct Grammar (TAG) analysis, we want :

◮ to build a deep syntactic structure with all argumental
relations represented

◮ to have all the analysis in the same structure

We claim it is possible if we work directly in a structure which
combines derived tree and derivation tree : A shared forest

2 / 1

What is an interface between syntax and semantic ?

A way to construct a semantic meaning of a given sentence.
So, what do you mean by semantic meaning ?

◮ a logical formula ?

◮ a dependency graph ?

◮ a predicate argument structure ?

Even, if they provide different level of informations, they rely on
the same principle :The Freege theorem.
The meaning of an expression is a function of the meanings of its parts

3 / 1

Implication of The Freege Theorem 1/2

◮ If we associate minimal sense to each part of a sentence

◮ If we provide an interpretation function f

⇒ We can obtain a meaning

let’s do that for“(1) Tarzan loves Jane”and let f assigns the first
argument of ’LOVE to the longest noun :
Tarzan : ’TARZAN
loves : [1] ’LOVE [2]
Jane : ’JANE

Semantic meaning of (1) : ’TARZAN ’LOVE ’JANE
But“(2) Jane loves Tarzan”has the same meaning ! We must rely
on a better interpretation function and for that we may use the
order induced by syntax to assign argument positions to words.

4 / 1

Implication of The Freege Theorem 2/2

◮ Providing this mini model :
r1 S → NP VP ([1]=f (NP)) ([PRED]=f (VP))
r2 NP → Tarzan ’TARZAN
r3 VP → V NP ’ ([PRED]=f (V)) ([2]=f (NP))
r4 V → love ’LOVE
r5 NP → Jane ’JANE

⇒ We have to apply the rules and therefore to follow the
derivations to get the proper result

5 / 1

Applying this model

r4

[1] [Pred]

[Pred][2]

r5

r2
r3

r1

’Jane’Love

’Tarzan

NP

Tarzan V

loves

NP

Jane

VP

S

• After the applications of the
derivation rules, we obtain :

• ’TARZAN ’LOVE ’JANE

⇒ Once again, we have the
correct interpretation

⇒ But what if we want to
analyze“Jane is loved by
Tarzan”?

6 / 1

Applying this model

Syntactically speaking we have 2 options :

◮ adding the following rules :
r3 VP -> V’ PP ([PRED]=f (V)) ([1]=f (PP))
r6 V’ -> be loved ’LOVE
r7 PP -> Prep NP [PRED]=f (NP)
r8

⇒ We have to modify deeply the corresponding semantic rules
(r1 for the inversion of the arguments, etc..)

◮ trying to use the fact that we are still trying to express
relation between words even if this is hidden by the
mechanism behind the rules

⇒ So we should try to lexicalize this grammar a little bit...

7 / 1

Lexicalization and semantic 1

if we replace the main VP rules by :
r3 VP -> love NP ’Love ([1]=f (NP))
r3’ VP -> be loved GP ’Love ([2]=f (PP))

The model is a lot more readable and simplified but the problem of
the inversion argument in rule r1 is still here

8 / 1

Lexicalization and semantic 2

Let’s consider these 2 trees :
r1

NP

Tarzan NP

Jane

S

VP

V

loves by

NP

Jane

NP

Tarzan

S

VP

PPV’

[be loved] Prep

Active Parse Tree Passive Parse Tree

◮ Assume that
the red part is
a single unit,
called αactive

(resp. αpassive)
and represents
by itself a set
of derivation
rules

9 / 1

Lexicalization and semantic 3

We could then express the derivation trees differentlty

αactive

r2(Tarzan) r5(Jane)

αpassive

r5(Jane) r2(Tarzan)
Observations :

◮ They are very similar

• w.r.t to the order of the arcs

⇒ one solution : numbered the nodes according to argument
positions

⇒ Implicit : one argument position is linked to a derivation
operation on a leaf node of αX

⇒ Hypothesis : would it be simpler to deal with trees instead of
rules -> it would simplify the semantic model

10 / 1

Dealing with trees

let’s call α2 and α5 the tree corresponding to r2 (NP → Tarzan)
and r5 (NP → Jane) :
α2 α5

NP

Tarzan

NP

Jane

11 / 1

Dealing with trees 2

let’s call α1 the tree corresponding to αactive (resp. α′

1 and
αpassive) :

α1 α′

1

r1

S

VP

V

loves

NP0

NP1
NP0

S

VP

PPV’

[be loved] Prep

by

NP1

◮ Notice the number on the leaf nodes
12 / 1

Dealing with trees 3

analysis for “Jane is loved by Tarzan”:

Tarzan

NP

Jane

α5

NP

α2

α1’

NP0

S

VP

PPV’

[be loved] Prep

by

NP1

13 / 1

Dealing with trees 4

Result : Derived Tree (Parse Tree) and Derivation Tree (History of
what have been derived).

S

NP

Jane

VP

V’

be loved

PP

Prep

by

NP

Tarzan

α′

1(love)

0-α2(Tarzan) 1-α5(Jane)

14 / 1

Pause : Where is the semantic model ?

◮ the derivation tree here is the semantic model

◮ take the head as a predicate

◮ take its leaves as its arguments

⇒ a predicate-argument structure, or a first order term

⇒ We do not need anymore the manually crafted semantic rules

15 / 1

How is it possible ?

◮ Lexicalization :

⇒ Each unit of the grammar is anchored by a lexical unit

◮ Minimal Semantic Principle

⇒ Each tree must correspond to a minimal semantic unit (msu)

◮ predicate-argument cooccurence principle

⇒ Each argumental leaves nodes of a tree has to be fully realized

this the so famous Well formedness principles

16 / 1

Where is the adjunction ?

So far, we described only Lexicalized Substitution Tree Grammars.
In order to fully lexicalized CFG, we need an optional operation of
tree insertion : The adjunction.

◮ only a certain type of tree can be adjoined :
The auxiliary tree (always prefixed by β)

◮ they must have a leaf node, the foot node with the same label
than the root of the tree, the path from the root to the foot is
called the spine

◮ let’s β1 the auxiliary tree for the raising verb“to seem” :
VP

V

seems

VPinf

to *VP

17 / 1

Example of adjunction 1/3

Analysis for “Jane seems to be loved by Tarzan” :

β1

α5

NP

NP

α2

α1’

Tarzan

Jane

S

VP

PPV’

[be loved] Prep

by

NP1

NP0

V

seems

VPinf

to VP*

VP

18 / 1

Example of adjunction 2 /3

Result : Derived Tree

S

NP

Jane

VP

V

seems

VPinf

to VP

V’

be loved

PP

Prep

by

NP

Tarzan

]

19 / 1

Example of adjunction 3/3

Results (suite) : Derivation tree for“Tarzan seems to love Jane” :
α′

1(love)

0-α2(Tarzan) 1-α5(Jane) β2(seem)

◮ the link between β2(seem) and α′

1(love) do not reflect a
dependency relation but a modifier one (it’s of course
disputable)

◮ depending of the type of anchors (predicative or modifier), the
adjunction link can be in the other direction.... Here are come
the problems we will discuss the next time.

20 / 1

A lexicalized Formalism

◮ Grammar contains elementary trees (initial and auxiliary trees)

◮ each tree is anchored by a lexical unit

◮ Two operations : substitution and adjonction

◮ As opposed to CFG, derivation tree and derived tree are not
isomorphic anymore

◮ As opposed to LFG and HPSG, parsable in polynomial time

21 / 1

Operations on trees

• The substitution is a context free derivation of an initial tree to a
leaf node of any elementary tree

γ

α

γ α

 X X

X

• The adjunction is a contextual insertion operation of an auxiliary
tree within an elementary tree

γ

γ

γ

β

β γ

θ

’

’

 X*

X

X

 X*

X

22 / 1

Derivation and derived trees

◮ Derivation tree : describes the derived tree construction (i.e
the strict record of the operations used to parse a sentance)

◮ Derived tree : syntactic structure of a sentence

◮ Ex: Given the trees γ and β, with β adjoined on the node 1 of γ

γ

β

γ

θ
γ

(1) β

’

Arbre de dérivation Arbre dérivé

 X*

X

23 / 1

Unification and Features Structure

Differences with other formalism :

◮ Features are atomic values only and then non reentrant

⇒ Features are used only to control the subcategorization frame
and to restrict the number of possible derivations according to
a feature value

⇒ because of the adjunction, features are splitted into 2 fields by
node : the top field and the bottom field

⇒ No Slash feature in TAG

24 / 1

Unification and Features Structure -2

Adjunction : Update of the features

25 / 1

Unification and Features Structure -3

Substitution : Update of the features

26 / 1

Unification and Features Structure

Illustration on a feature Vinf=+ :
If we want to be sure that β2 adjoin on tree with an infinitive, we have to
add some informations to this tree :
Tree β2 VP

V

seems

VP

to *VP(top:Vinf=+|bot:∅)

27 / 1

Unification and Features Structure

Illustration on a feature Vinf=+ : (suite)
Tree α′

1 S

NP↓ VP(top:Vinf=-|bot:Vinf=+)

V’

be loved

PP

Prep

by

NP↓

By having two different top and bottom values on the node VP, we
force the adjunction of an auxiliary tree of root VP and whose foot
node has the value top:Vinf=+, therefore no more unification
clash.

28 / 1

Long Distance Dependencies

Derivation Process
Who do you think that Mary claim that Sarah liked ?

29 / 1

Long Distance Dependencies 2

Derivation Tree

α1 liked

(1) α4 who (2) β2 claim

(1) α3 Mary (0) β1 think

(1) α3 you

(1) α5 sarah

30 / 1

Long Distance Dependencies 3

Derived Tree

31 / 1

More to Come, July the 5th

Outline

◮ Is the Derivation Tree a good structure for Semantic ?

◮ Is it Possible to Use both Derived Tree and Derivation Tree
for that ?

◮ What are Shared Forests, Derivation Forests or Dependancy
Forests ?

◮ What more can we do than Regular LTAG ? (control, ellipsis..)

◮ What are Multi-Component TAG, Synchronous TAG and
Metagrammars ?

32 / 1

